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Abstract

In this paper, we construct graphs having a fractal property, and groupoids
induced by the graphs. The fundamental properties of them and their
corresponding graph von Neumann algebras, and their radial operators are
studied.

1. Introduction

We are concerned with countable directed graphs G as they act on
measure spaces. Our motivation comes in part from the study of weighted
graphs used in infinite (very large) electric networks, in statistical models
from physics, stochastic processes indexed by some fixed directed graph,
or in the study renormalization and of fractals. These applications involve

some similarity of scales. This in turn dictates a particular special
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interaction between the particular graph G under consideration, and its
environment X. The latter will be modelled on a measure space, a framed

system; see detailed definitions below.

1.1. Overview. Our aim is to identify certain similarity scales and
renormalization structures in graphs. They will allow us to connect global
aspects of a system G, X with its local parts, similarity of scales in the
small and in the large. While this may be done in a variety of ways in
general, we will focus here on one such approach, made precise with our

use of radial operators for the system under consideration.

Our motivation comes in part from operator algebras, more
specifically, from the theory of one-parameter groups of automorphisms
acting on a von Neumann algebra. Our questions have a measure-

theoretic flavor, which favors the use of von Neumann algebras, as

opposed to C*- algebras.

A graph is a set of objects called vertices (or points or nodes)
connected by links called edges (or lines). In a directed graph, the two
directions are counted as being distinct directed edges (or arcs). A graph
1s depicted in a diagrammatic form as a set of dots (for vertices), joined by
curves (for edges). Similarly, a directed graph is depicted in a
diagrammatic form as a set of dots joined by arrowed curves, where the
arrows point is the direction of the directed edges. We are interested in

countable directed graphs.

More precisely, a directed graph G is a pair (V(G), E(G)), with
direction on E(G), where V(G) is the vertex set, consisting of all vertices
of G, and E(G) is the edge set, consisting of all directed edges of G. The
direction on G creates the initial vertices and the terminal vertices of

edges.

The algebraic structures, induced by directed graphs, have been
studied recently (e.g., see [3] through [18]). In particular, in [3], the graph
groupoids are defined by the groupoids induced by graphs (also, see [22]
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and [38]). Depending on such groupoidal structures, we could construct
von Neumann algebras preserving the combinatorial properties of graphs,
and depending on the algebraic reduction of graph groupoids: We realized
that, under the suitable representation, graph groupoids are nicely

embedded in an operator algebra, and they generate the groupoid
(W*-or C*-)dynamical system in the operator algebra. Thus, by the
groupoid crossed product, we defined graph von Neumann algebras in [3],

[4], and we characterized C*-algebras generated by certain operators in

[14], [17], and [18].

1.2. Motivation. The main purpose of this paper is to introduce new
algebraic structures having certain fractal property, which is called
fractality. In [15], we introduced these structures, called the fractaloids.
Fractaloids in the sense of [15] are the graph groupoids, in the sense of
Subsection 3.2 (below), satisfying certain additional conditions. In [12],
we call the fractaloids, the graph fractaloids, to emphasize that they are

special “graph” groupoids.

In [14], we conjectured that the connected “finite” directed graphs,

generating graph fractaloids, are:

(1) the one-vertex-multi-loop-edge graphs O,,, with

V(0,) = {vo}

n»

and
E(O,) ={e, ..., e, },

where e; are the directed edges connecting vp to v, for all n € N. For

instance,

O
1s the one-vertex-one-loop-edge graph, or

(i1) the one-flow circulant graphs K,,, with

V(Kn) = {Ul, cees Un,}>
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and
E(Kn) = {612’ €93, €345 --+> €p_1 n> en,l}’

where e;; means the edge connecting the vertex v; to the vertex v;, for

n € N\ {1}. For instance,
[ ] — [ ]
o
is the one-flow circulant graph Kj, or

(i11) a suitable connection or unions of the graphs in (i) and (i1). And
this conjecture is concluded in [9]. We realized that there are many more
connected finite directed graphs generating graph fractaloids. Indeed, the
conclusion of [9] shows the richness of fractaloids: There are sufficiently
many “finite” fractal graphs (and hence there are sufficiently many

fractal graphs).

Futhermore, in [10] and [19], we showed that, for any pair (n, m) € N
xN,, where N, = NU {w}, there exists at least one corresponding
fractal graph, i.e., if F,,.q; 1s the collection of all connected locally finite
fractal graphs, then it is decomposed by the equivalence classes [(n, m)],

called the spectral classes, by

[(n, m)]

Fractal = U
ractal (n, m)eNxN,,

(also, see below Section 3).

Independently, the measure framing on graphs have been studied by
the authors (see [42]). Roughly speaking, the measure framing on an
arbitrary directed graph G is to attach a Borel measure space

X = (X, By, u), equipped with a topological space X, a Borel c- algebra
Bx of X, and the (bounded) Borel measure p, on G.
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By understanding the combinatorial object G, as a discrete topological

space G = V(G)U E(G), we can construct a product topological space

Gx = X x @, called the (measure) framed graph of G framed by X. In
particular, X is said to be the frame of Gx. Then the set

Gy = Bx xG,

forms a (categorial) groupoid in the sense of [38] (also, see Subsection 2.6

below), under the binary operation,
(B, w1 )(Bg, wy) = (B N By, wiwy),

for all By, By € By, and w;, wyg € G. The groupoidal property (or the

admissibility) of the graph groupoid G governs that (resp., framed
admissibility) of Gyx. Then, the pair Gx = (Gy, -) is a well-defined

groupoid and we call it the framed (graph) groupoid of G, with the frame
X. This construction, itself, is interesting, since it provides a way to
construct groupoids, with uncountably many elements. For instance, if

we take a frame X by ([0, 1], Bjo 1}, ), where [0, 1] is the closed interval
in R, and Bio,1] is the Borel o- algebra, generated by all closed subsets
of [0, 1], and p is the usual Lebesgue measure on Bio,1}, then the framed

groupoid Gy, for any graph groupoid G, contains uncountably infinitely

many elements.

The main result of [42] is the characterization of the groupoid W*-
algebras, generated by framed groupoids: If Mg, = (C[GX]w is the
groupoid von Neumann algebra, generated by a framed groupoid Gy,

then

*-isomorphic

Mg = Mx ®c Mg,

X

where

My = L*(X) = L*(X, ),
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and
Mg =C[G]"

is the usual graph von Neumann algebra of G, in the sense of [3] through
[17]. Here, we construct framed fractaloids, which is fractaloids, induced

by the measure framing.
2. Definitions

In this section, we provide the motivation of this paper. Measure
(space) framing on graphs and the study of fractals on graphs have been
studied independently. In this paper, we provide a connection between
them.

2.1. Measure framing on graphs. Let A be a C*- (or W*-)algebra in a
ring B(H) of (bounded linear) operators on a Hilbert space H. Let I' be a
group and assume that there exists a group action y of I', acting on A, in

the sense that: (1) v, are *-automorphisms of A, for all g € I', and (ii) for

any g;, g9 €T,

Ve °Vgy = Targe»
where (o) is the usual composition. Then, the triple (A, T, y) is called a

group C*-(resp., W*-)dynamical system. It is well-known that such a

group dynamical system (A, T, y) generates the corresponding group
C*- (resp., W*-) crossed product algebra A = A x, I', and these group
crossed product operator algebraic structures have been widely studied.

Let R be the time axis equipped with the binary operation, the usual

addition (+), i.e., we have a group R = (R, +). Assume that there exists

a group action y of R acting on A, such that
@) y; : A > A are #-automorphisms for all ¢ € R,

(i) yg(a) = a, for all a € A,
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i) y,(14) = 14, forall £ e R,
(IV) YKl ° YtQ = Ytl +i9 2 for all tl? t2 € R.

Then, in particular, the triple (A, R, y) is said to be a dynamical
system with flow (flowed by R).
More generally, let A be given as above, and let X be a (categorial)

groupoid. Assume that, there exists a groupoid action o of X satisfying

that: (i) o, are * endomorphisms on A, for all x € X, and (ii) for any

X1, X9 € X,
Oy, © Olyy = Olyypy-

Then similar to the group case, we have a groupoid C*- (resp., W*-)
dynamical system (A, X, a), and the corresponding groupoid crossed
product algebra A = A x, X. Since all groups are groupoids, groupoidal

version of dynamical systems, and crossed product algebras are the

enlarged concepts for group version of them.

In particular, if A is given as before, and G is a “graph groupoid” (in
the sense of Subsection 3.2 below), then we call the dynamical system
(A, G, a), a graph dynamical system.

Let X = (X, By, u) be an arbitrary given Borel measure space, and
let (A, X, a) be a groupoid dynamical system. Then, the calculus on X
may / can be affected (or changed also) by the dynamics of A. To study

such an affection (or a change), we introduce the “framing” on graphs in
Section 4 below (also, see [20]). Roughly speaking, the calculus on X is
framed on X. Then, we can consider the calculus on X, preserving the

calculus on X.

In “our” representations in the sense of Section 4, the groupoid
algebras generated by framed groupoids are characterized as tensor
products. This means that the changes of the calculus on X are
understood to be tensorized under certain representations for framed

groupoids.
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2.2. Fractals on graphs. While the measure framing on graphs have
been studied, the fractal property, which is called the fractality, for short,
of graphs have also been studied (see [9], [12], [15], [16], [19], and [21]). In
[13] and [14], we showed that, if there is a certain kind of family G of

partial isometries on a Hilbert space H, then G induces a directed graph,
called the corresponding graph G of G, and it generates a groupoid Gg
embedded in B(H). It is easy to check that the graph groupoid G of G is
groupoid-isomorphic to Gg, i.e., the operator-algebraic structures of G,
embedded in B(H), is explained by the elements of G. However, the
analysis of G is still very complicated. So, the relatively easy (but not so

easy) cases were needed. The first example constructed under this idea

was the groupoids G with fractality.

So, independently, graph groupoids with fractality, called the graph
fractaloids, have been studied. We call the graphs generating graph
fractaloids, the fractal graphs. We defined the operator 7T, induced by a

fractal graph G, in a certain von Neumann algebra M, and observed
the free distributional data of 7, by computing the free moments of it.
Such data give us the spectral information of 7(;, and hence explain how

the graph fractaloid G of G works in the von Neumann algebra M.

In particular, in [9], we showed that, there are sufficiently many
fractal graphs generating graph fractaloids, which are not just fractal

groups (in the sense of [39]).

2.3. Frames and fractals. In this paper, as application of the study of
framed graphs and framed groupoids, we introduce graph fractaloids and
the corresponding “framed” fractaloids. It demonstrates nicely how our
measure framing works in an operator algebraic structure. In particular,
we can check how the fractality of graph fractaloids preserves the frames,

which are measure spaces, through fractal graphs, in B(H).
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3. Background

In this section, we introduce the concepts we will use in context.
3.1. Free probability. Let B <« A be von Neumann algebras with
1p =14, and assume that there is a conditional expectation
Egp : A — B, satisfying that: (i) Eg is a (C-)linear map, (i) Eg(b) = b,
for all b e B, (iii)) Eg(byaby)=0b Eg(a)by, for all b, by € B and

a € A, (iv) Epg is continuous under the given topologies of A and B, and

) Eg(a”) = Eg(a)’ in B, for all a € A.

The algebraic pair (A, Ep) is said to be a B-valued W"- probability
space. Every operator in (A, Eg) is called a B-valued (free) random

variable. Any B-valued random variables have their B-valued free

distributional data: B-valued * moments and B-valued *-cumulants of
them. Suppose ay, ..., a;, are B-valued random variables in (A, Ep),
where s € N. The (i, ..., i, )-th joint B-valued *- moments of ay, ..., a,

are defined by
; ; Tin
Ep((ba;! ) (b2a;? ) .. (Bya;™ ),

and the (ji, ..., ji)-th joint B-valued #-cumulants of ay, ..., a, are

defined by

(b ), o ) = 3 B b 1),
neNC(k)
for all (i, ...,i,) e fl, ..., s)" and for all (ji, ..., jz)e L, ..., s}*, for
n, k e N, where b; € B are arbitrary and 7, ..., 1, , Tj,, .-, T, € {1, *},
and NC(k) is the lattice of all noncrossing partitions with its minimal
element 0 ={(1), (2), ..., (k)} and its maximal element 1, ={(1, 2, ..., k)},
for all £ € N, and p is the Moebius functional in the incidence algebra

Z. Here, Eg..(...) is the partition-depending B-valued moment.
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For example, if © = {(1, 4), (2, 3), (5)} in NC(5), then

Ep..(ay, ag, ag, ay, a5) = Eg(a1Ep(agag )ay )Eg(as).

Recall that the lattice NC(n) of all noncrossing partitions over {1, ..., n}

has its partial ordering “<,”

def
n < Gé)V a block Vin =, 3 ablock Bin 0 s.t., V < B,

for n, 6 € NC(n), where “c” means the usual set inclusion, for all

n € N. Also, recall that the incidence algebra T is the collection of all

functionals

£ U;(NC(n) x NC(n)) - C

satisfying that &(n, 0) = 0, whenever n > 0, with the usual function

addition (+) and the convolution (*) defined by

def

(& *£2)(r 0 S Ve, 0)eslo, 0),

n<c<0
for all &;, &5 € Z. If we define the zeta functional { € T by
¢(m, 8) =1, forall = < 6 in NC(n), for all n € N,

then its convolution-inverse in Z 1is the Moebius functional u. Thus, the

Moebius functional p satisfies that

10, 1) = (1" ey and S u(n,1,) = 0,
neNg(n)

def 1 (2k

where ¢, = i1 k] is the k-th Catalan number, for all £ € N.

The B-valued freeness on (A, Eg) is characterized by the B-valued
*.cumulants. Let A; and A, be W®-subalgebras of A having their

common W*-subalgebra B. We say that A; and A, are free over B in
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(A, Ep), if all mixed B-valued *-cumulants of A; and Ay vanish. The
subsets X; and Xy of A are said to be free over B in (A, Eg), if the

W*- subalgebras vN(X;, B) and vN(Xg, B) of A are free over B in
(A, Ep), where uN(S;, Sy) means the von Neumann algebra generated
by sets S; and Sy. Similarly, we say that the B-valued random variables
x and y are free over B in (A, Eg), if the subsets {x} and {y} are free
over Bin (A, Ep).

Let A; and A, be W*-subalgebra of A containing their common

W*- subalgebra B, and assume that they are free over B in (A, Ep).

Then, we can construct a W*- algebra vN(A;, Ay) of A generated by A;
and Ay. We denote it by A; *g Ag. Suppose there exists a family

{A; :ie A} of W*-subalgebras of A containing their common W*-

subalgebra B. If they generate A and if they are free over B from each
other in (A, Ep), then the von Neumann algebra A is the B-valued free

product algebra *p A;.
e

Suppose a von Neumann algebra A is a B-free product algebra *p A;.
ieA

Then A is Banach-space isomorphic to the Banach space

Bo (@;;;1 ( © (A2 ®p..®p 40 )D

i]_ ¢i2, i2 ¢i3, ey in—l #lp
with

def
A) = Aj©B, forall j=1,..,n,
J

where ®p is the B-valued tensor product.

Let a;, be “self-adjoint” B-valued random variables in a B-valued

W*- probability space (Ap, E]}f;»), for £ =1, 2. We say that the two self-

adjoint operators a; and ag are identically distributed over B, if
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Eh(af) = E}(ak) in B, forall k € N.

3.2. Graph groupoids. Let G be a directed graph with its vertex set
V(G) andits edge set E(G). Let e € E(G) be an edge connecting a vertex

v; to a vertex vy. Then, we write e = v, evg, for emphasizing the initial

vertex v; of e and the terminal vertex vy of e. For a graph G, we can
define the oppositely directed graph G~!, with V(G™!)=V(G) and
E(G')={e!:ec E(G), where each element e ! satisfies that
e =v; evy in E(G), with vy, vy € V(G), if and only if e = vg e L vy, in
E(G™'). This opposite directed edge e ™! e E(G™!) of e e E(G) is called
the shadow of e. Also, this new graph G, induced by G, is said to be the

shadow of G. It is clear that (G™1)! = G.

Define the shadowed graph G of G by a directed graph with its
vertex set V(G) =V (G) =V (G') and its edge set E(G)=E(G)UE
(G™1), where G is the shadow of G. We say that two edges
ep = U1 e 0] and ey = vg eg Uy are admissible, if v] = vy, equivalently,
the finite path e e5 is well-defined on G. Similarly, if w; and wy are
finite paths on G, then we say w; and wg are admissible, if w; wy is a

well-defined finite path on G, too. Similar to the edge case, if a finite path

w has its initial vertex v and its terminal vertex v’, then we write w = vy
wvy. Notice that every admissible finite path is a word in E( G ).
Denote the set of all finite path by FP ( G ). Then FP ( G ) is the subset

of E( G )", consisting of all words in E (G ).

We can construct the free semigroupoid F* (é) of the shadowed
graph G, as the union of all vertices in V(a, )=V(G)=V(G') and

admissible wordsin FP ( G ), with its binary operation, the admissibility.
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Naturally, we assume that F* ( G ) contains the empty word 0. Remark
that some free semigroupoid F* (@) of G does not contain the empty
word; for instance, if a graph G is a one-vertex-multi-edge graph, then the
shadowed graph G of G is also a one-vertex-multi-edge graph, and it
induces the free semigroupoid F* (é ), which does not have the empty
word. However, in general, if [V(G)| > 1, then F" ( G ) always contain the
empty word. Thus, if there is no confusion, we always assume the empty

word 0 is contained in the free semigroupoid F" ( G ) of G.

By defining the reduction (RR) on F* (é), we can construct the
graph groupoid G.

Definition 3.1. Let G be a countable directed graph with its
shadowed graph G. The graph groupoid G is a set of all “reduced” words
in the edge set E ( G ) of G, equipped with the inherited admissibility on

the free semigroupoid F* ( G ), where the reduction (RR) on G is defined
as follows:

(RR) ww ' =v and wlw= v,

forall w =vwv' € G, with v, v’eV(G).

In fact, graph groupoids are indeed categorial groupoids.

3.3. Graph von Neumann algebras. In this section, we briefly
introduce graph von Neumann algebras of the graphs (see [3] through
[2]). Let G be a directed graph with its graph groupoid G. Then, we can
construct the corresponding Hilbert space Hg; by

Hg dif( o cgvj@[ ® caw]:ﬂ ).
veV(G) weFP,.(G)



346 ILWOO CHO

Then, this Hilbert space Hg is called the graph Hilbert space induced by
G. Notice that, by definition, the Hilbert space Hg has its Hilbert basis

(¢,:weFP. (G)}.
Define the canonical (left) groupoid action
L:G— B(Hg),
of G, acting on Hg, by

Lw)™ L, e B(Hg), forall w € G,

where L,,’s are the multiplication operators with their symbols &,,, with

their adjoint LZ, = Lw‘l’ for all w € G.

The pair (Hg, L) is called the canonical representation of G.

Definition 3.2. Let G be a graph with its graph groupoid G, and let
(Hg, L) be the canonical representation of G. Define the groupoid W*-
algebra Mg by CIL@G)]" in B(Hg). This groupoid W*- algebra M is

called the graph von Neumann algebra of G. Define a W*- subalgebra
DG of MG by
D; = ©_ (C-R)).
veV(G)
It is called the diagonal subalgebra of M.

Remark 3.1. In [6], [14], and [15], we observed the right

multiplication operators R,,’s, for all w e G, instead of using left

multiplication operators L, ’s. Then, we can define the right graph von
Neumann algebra M? = C[R@)]" in B(Hg), where R: G — B(Hg)

. . . . . . def
is the right groupoid action of G, acting on Hg, ie., R, &, = Ewwo for
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all w, w' € G. Notice that M’ and M are anti- *-isomorphic, because

indeed, the right graph von Neumann algebra M gp is the opposite
*- algebra of the graph von Neumann algebra M. Thus, they share the

fundamental properties.

Notice that, every element x in the graph von Neumann algebra Mg

of G has its expression,

x = th L,, with t,, € C.

weG

Let Dg be the diagonal subalgebra of M. Define the canonical

conditional expectation
E: MG —> DG
by

E[thLw]dif >t Ly,

weG veV (@)

for all Y ¢, L, € Mg. Then, the pair (Mg, E) is a Dg-valued

weG
W*- probability space over Dg, in the sense of Voiculescu (see [43] and
[61)).
Definition 3.3. The Dg-valued W™- probability space (Mg, E) is

called the graph W*- probability space induced by the given graph G.

By [3] and [4], we have the following two results:

Theorem A (see [3] and [4]). Let Mg be the right graph von
Neumann algebra of G. Then, it is *-isomorphic to the Dg-valued

D,
ecE(G)

reduced free product algebra *rG M, of the Dg-free blocks M,, where
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M, def vN(G,, Dg) in B(Hg), where G, are the subgroupoid of G,

induced by {e, ™'}, for all e e E(G). O
Theorem B (see [4]). Let Mg be the right graph von Neumann

algebra of G, and let *;)G M, be the Dg-valued reduced free product

ecE(G)
algebra of M,’s, which is *-isomorphicto Mg, in B(Hg).

(1) If e is a loop edge, then the corresponding Dg;-free block M, is

x-1somorphic to the group von Neumann algebra L(Z), generated by the
infinite cyclic abelian group Z, which is also *-isomorphic to the L”-

algebra L*(T), where T is the unit circle in C.

(2) If e is a non-loop edge, then M, is *-isomorphic to the matricial

algebra M, (C), consisting of all (2 x 2)-matrices. 0

3.4. Radial operators of graph groupoids. Let G be a countable
directed graph with its graph groupoid G, and let M be the graph von

Neumann algebra of G. Define an operator T; by
7o > L= > (L+L.)
G i e e 671 )
ecE(G) ecE(G)
in MG'
Definition 3.4. This operator T is called the radial operator of G.

Let G be a countable directed graph. Then, every vertex v of G has
the following quantities:

def
degout(v) = |{e € E(G) e = Ue}l,
called the out-degree of v (in G)
def
deg;,(v) =|{e € E(G) : e = ev}|,

called the in-degree of v (in G), and
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def
deg(v) = deg oy (v) + degip (v),
called the degree of v (in G), for all v € V(G).

Now, let G be a connected, locally finite graph. Recall that a graph G

is connected, if for any pair (v, v') of “distinct” vertices, there always
exists at least one element w in the graph groupoid G of G, such that
w=vwv, and w' = v'w v, Recall also that a graph G is locally finite,

there are only finitely many incident edges for every vertex of G,

equivalently, G is locally finite, if and only if deg(v) < oo, for all
v e V(G).

For the given connected locally finite graph G, define the quantity N
by

N max{ deg,,;(v) : v € V(G)} in G.

Then, by the locally finiteness of G, this number N is less than oo. In [15],
we computed the Dg-valued moments E (Tg ) and the Dg-valued

cumulants %, (Tg, ..., Tg), for all n e N. Also, in [14], we computed

them, where G 1is a graph fractaloid.
By the very definition, the radial operators are self-adjoint in Mg, in

the sense that TG = Tg. So, the Dg-valued moments and the Dg-
valued cumulants of T; contain full free distributional data of 7. Such

data for T; show how G works on Hg.

4. Measure Framing on Graphs

Throughout this section, let G be an arbitrary directed graph.
However, for our main purpose, the readers may / can assume all graphs
are connected and locally finite. However, we emphasize that the
following results of this section is applicable for the general cases. Let
X = (X, By, ) be a Borel space, where X is a topological space, By is a

Borel o- algebra of X, and p is a Borel measure on By.
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4.1. Framed graphs and framed groupoids. From now on, regard the
combinatorial object G as a discrete topological space V(G)U E(G), also

denoted by G. Then, we can construct the topological space
GX =X x G,

under the product topology of X and G, i.e., the topological space Gx is
the set

XxG={x,y):xeX,yeV(G)UE(G)},
equipped with the product topology of X and G = V(G)U E(G).

Definition 4.1. The topological space Gx is called the framed graph
of G with the frame X.

The elements (x, y) of a framed graph Gx can be understand as the

elements x of X having their movements y determined by (the direction
of) G. If y € G is a vertex, then (x, y) € Gx can be regarded as x € X at

the position y (without movement). So, the elements (x, y;) and (x, y9)
are distinct elements in Gx. If y € G is an edge y = v yv', with v, v’ €

V(G), then (x, y) is x € X moving from the position v to the position v’

Also, the elements (x, y) of Gx can be understand the movements
y € G, with their properties represented by x € X. For our purpose, we
consider the elements (x, y) of Gy as the movements y € G with their
properties x € X. So, similarly, the elements (x;, y) and (xg, y) of Gx

are regarded as distinct elements: Even though, they have same

movements determined by y € G, their properties are distinct, whenever

X1 # X9 In X.
Then define the Cartesian product
Gx = Bx xG,
induced by Gx. As a set, Gx 1is

{(B,w): BeByx,we G}
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The elements (B, w) of Gy are regarded as the movements determined
by the movements ey, ..., e € E(@ ), where w € G is the “reduced”

word e ...e, in F* (@), for k € N, preserving or maintaining the
property B € By, represented by the measure p(B). Or, alternatively,
we may / can understand (B, w)e Gy as the property B e By,
represented by p(B), preserved (or maintained) by the movement

w=e ...ep €G.
Now, define the binary operation (-) on Gy by
(By, wy)(By, wg) = (B; N By, wywg),
for all (By,, wy,) € Gy, for k =1, 2, with the empty element 0x of Gy
(@, w)=0x = (B, 0),

for all w € G, and B € By, where & is the empty set, and 0 is the

empty element of G. Such a binary operation is called the framed

admissibility on the set Gy.

Notice that the pair Gx = (Gy, -) of the set Gx and the framed

admissibility (-) is indeed a groupoid with the groupoid inverses;

(B, w) " (B, w™),

for all (B, w) e Gy, where w™ € G is the shadow of w € G. We call the
groupoid inverse (B, w)™* of (B, w), the framed shadow of (B, w).
Define now subsets V' ( é)\( ) and FP, (é}\( ) of Gx by

V(G ) (B, v):BeBy, veV(G)],

and

FP, (Gx ) (B, w): BeBy, we FP.(G)),
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where G is the shadowed graph of G, in the sense of Subsection 3.2. We
call V ( é)\( ), FP. ((/;)\( ), the framed vertex set and the framed reduced
finite path set, respectively. Clearly, without loss of generality, the

notation (/;)\( can be understand as the framed graph X x G. This framed
graph é)\( - XxG is called the framed shadowed graph of the framed
graph Gx. Similarly, if we use the notation G;}l, it means the framed
graph X x G™!, where G7! is the shadow of G. We call G;}l, the framed
shadow of Gx. (Notice here that the framed structures Gy, é;( , and
G;}l are not purely combinatorial objects. They are topological spaces,

determined by X and G, or @, or G71, respectively.)

Definition 4.2. The pair (Gy, -) of the set Gx and the framed
admissibility (-) is called the framed (graph) groupoid of G with the
frame X. We denote this pair simply by G x.

Remark 4.1. (1) All elements of the framed groupoid Gx are the
algebraic objects equipped with certain property represented by the Borel

sets, as we discussed before. So, the framed admissibility on G x means
that, whenever the algebraic object w with the property B(i.e., (B,w)e
Gy) meets with the admissible successor y with the property
C(i.e., (C,y)e Gx), then w follows y, determined by wy € G, with the
restricted property B () C.

(2) The study of framed graphs and framed groupoids are interesting,
since it provides a way to create groupoids with “uncountably” infinitely

many elements. For instance, if we take a measure space X as a standard

Borel measure space ((0,1), B, p), where p is the usual Lebesgue
measure on the open interval (0, 1), then for any countable directed
graphs G with their graph groupoids G, the framed groupoids Gy

contain uncountably infinitely many elements, as groupoids.
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By the very definition, we have the following proposition:

Proposition 4.1. Let G®) pe graphs with their graph groupoids

G(k), and let X;, be measure spaces, for k =1, 2. Let Gg?lz be framed

graphs with their framed groupoids G(}?}Z, for k=1, 2. If X, are

equivalent, and if the shadowed graphs el of G gre graph-

isomorphic, then the framed groupoids Gg};]z are groupoid-isomorphic. [

4.2. Canonical representation of framed groupoids. Similar to the
canonical representation of graph groupoids, we consider that of “framed”
groupoids. Throughout this section, let G be a countable directed graph
with its graph groupoid G, and X = (X, By, u), a fixed Borel measure

space. Recall that, the graph G induces its graph Hilbert space
Hg = 12(G),
and the Borel space X induces its corresponding Hilbert space
Hy = I*(X, ),

consisting of all square integrable measurable functions on X. Recall also

that Hg has its inner product,

def

< (taw17 E.>w2 >G - 6w1,w2,

for all Hilbert basis elements &wk, for all wy, € G, for k£ =1, 2, where &

means the Kronecker delta, and H x has its inner product,
def -
< 81,82 >2 = J.Xgl g2 du,
for all g, € Hy, for k =1, 2, in particular,

<AB» XBy 2 = _[XXBl %B, dn = u(B; N By),
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for all By, By € Bx, where

def {1, if xeX,

X =
15 (%) 0, otherwise,

for all B € By.

By construction, we can determine the representation of the framed

groupoid Gy of G, with the frame X, canonically. Define the Hilbert

space HGX by

Hg, < Hy ® Hg.

The inner product <, > is defined by

<&(Blw ) &(Bywy) > = W(By N Ba )y, »
=< AB;» XBy >2 < Cuw;s Swy >G>
for all (By,, wy, ) € Gy, for £ =1, 2. For instance,
< &(B,w)> &B,w) >= WB), for all (B, w) € Gy,
and hence
[eB,w)| = (B)], for all (B, w) e Gx.

Definition 4.3. This Hilbert space H Gy is called the framed graph
Hilbert space of Gx.

Then all elements (B, w) e Gx act on Hg,, as the multiplication
operators with their symbols &g ,), for all (B, w) e Gy, ie., we can
define the groupoid action

L:Gy - B(Hg,)

by
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) def

L(B, w) = Lig ).,

the multiplication operator with its symbol &g ,) € Hg, . Notice that
the operator Lp , acts on Hg, by
1B ®Lw on HX ®HG = HGX’

where y g is the characteristic function, for all B € By, and ¢ € X, and
L,, is the multiplication operator with &, on Hg. Then L is indeed a

groupoid action of Gy, since:
L((By, wy )(Bg, wy)) = L(B,(\By, wywy)
= L(Byw)) (Byws)
= L(By,w))(By.wy)
= L(By, w; ) L(By, wy).
This action L is called the canonical (left) groupoid action of Gx.

Definition 4.4. The pair (HGX, L), with the framed graph Hilbert
space H Gy and canonical groupoid action of Gy, is called the canonical

(left) representation of the framed groupoid G x. Define the groupoid von

Neumann algebra Mg, by

def

Mg, = C[L(Gy)]",

as a W"- subalgebra of B(H Gy ). Then, it is called the framed graph von
Neumann algebra of G, with the frame X (or, of Gy ).

Let M Gy be the framed graph von Neumann algebra of Gyx. Define

a W"-subalgebra Mg.x of B(Hx)®c B(Hg) by the tensor product
algebra,
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Mga.x f Mx ®c Mg

of Mx = L*(X, n), and the usual graph von Neumann algebra Mg =
c[G]".
Definition 4.5. Now, define the linear map

D : MGX - Mg.x

by

(B,w)eGyx (B,w)eBxxG

forall > tpuw)lBw € Mgy, with ¢(p ) € C.
(B,w)eGyx

Notice that every element y of M Gy has its expression

y = Z S(B,w)L(B,w)’ with S(B,w) € C.
(B,w)eGyx

The map ® of the above definition is *-multiplicative. Thus, ® is a
*- homomorphism. Also, by the very definition of the framed groupoid
Gyx, it is equipotent (or bijective) to the set Bx x G. So, the map @ is a
generator-preserving bijection, and hence @ is a *-isomorphism. Thus,

the von Neumann algebras Mg, < B(Hg, ) and Mg.x c B(Hx ®

Hg) are *-isomorphic.

*-180

Observation. Mg, = Mx ®c Mg. 0
By defining the framed diagonal subalgebra DGX of MGX by

def *-180
= @ CL(B,U) = MX ®(C DG’

Dg _
(B,v)eV(Gx)

X
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where Dg is the diagonal subalgebra of the usual graph von Neumann

algebra Mg of G, we can define the conditional expectation
EO . MGX d DGX

by

def
Eo L Z t(B,W)L(B,w)J = Z tB,v)L(B,v)

B, w)eG x (B,v)eV(Gy)
This also shows that there do exist the amalgamated free probability on
Mgy, too.
By definition of the conditional expectation E;, over the framed
diagonal subalgebra DGX, the (reduced) freeness of the framed graph
von Neumann algebra M Gx is completely determined by the (reduced)

freeness of the graph von Neumann algebra Mg, i.e., we can have that:

Theorem 4.2. Let MGX be the framed graph von Neumann algebra
of a framed graph Gyx, and let DGX be the framed diagonal subalgebra
of MGX- Let E{ be the conditional expectation defined in the previous

paragraph. Then

with the Dg, - free blocks Mx..,

def *-180

My.. = UN(Me’ MX) = Mx ®c M., in B(HGX )’
forall e € E(G).

Proof. The framed graph von Neumann algebra MGX is
x-isomorphic to the von Neumann algebra My ®: M5, where My is

the von Neumann algebra L”(X, n), and Mg is the usual graph von
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Neumann algebra of G. Let’s denote My ®: Mg and Mx ®c Dg by

Mgy and Dg,, respectively, where Dg is the usual diagonal

X
subalgebra of M.

Define now a conditional expectation
80 . MGX e DGX
by

0%, ®E,

where i; means the identity map, and E is the canonical conditional

expectation from Mg onto Dg, i.e., £, is the linear map satisfying that

Eo(g ®x) = g ®E(x), for all g ®x € Mg,

Then, the amalgamated W"- probability spaces (MGX,EO) and

. . . *-150
(MGX, Ep) are equivalent in the sense of Voiculescu over Dgy =

Dgy, - This shows that the DGX-freeness on MGX (depending on Ej),

and the Dgy -freeness on Mgy (depending on &) are equivalent. So,

X Dg

MG *_I:SO MGX dgf MX ®(C MG *-IZSO MX ®C { ! Me],
ecE(G)

where M,’s are the Dg-free blocks vN(G,)’s for all e € E(G)

*.i_so r

- *MX®(CDG UN(MX, Me)

ecE(G)

*-180 .

= *;;GX My ®c M, (in B(Hgy))

ecE(G)

*-150

= *rDG Mx., u
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The above theorem shows that the free probability is also used to study

framed graph von Neumann algebras under certain conditions.

4.3. Framed graph von Neumann algebras. Let G be a directed graph
with its graph groupoid G, X = (X, Bx, u) be a given Borel space, and

let My = L”(X, ). Let Gx be the framed graph of G with the frame X,

and Gy be the framed groupoid of Gx. Also, let Mg, = C[L(Gx 1 be

the framed graph von Neumann algebra in B(Hg, ).

Remember that M; has the amalgamated (Dg-valued) reduced free

structures;

MG = *D Me’

G
ecE(G)
with its Dg-free blocks M, = vN(G, ), for all e € E(G), where G, are

the subgroupoids of G, consisting of all reduced words only in {e, e ! 3
In the previous section, we defined the framed diagonal subalgebra
Dg,, , and the conditional expectation Ey : Mg, — Dg, . We concluded

the amalgamated freeness on the framed graph von Neumann algebra
MGX;

where

def *-180

Mx. = UN(MXr Me) = Mx ®c M.,
for all e € E(G), where M,’s are the Dg-free blocks of the graph von
Neumann algebra M; of G, i.e., the DGX-Valued freeness is naturally

determined on Mg, , by the Dg-valued freeness of Mg, tensorized by
My.
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By using the =-isomorphic relation of the framed graph von

Neumann algebra Mg, , and Mg, = Mx ®c Mg, we define now a

new conditional expectation Ex : Mg, — Dg by

def

EX = (Int ®E)°CD,
le.,
EX[ Z t(B,w)L(B,w)} = Int[ Z t(B,w)XBJE[ Z Lw},
(B,w)eGx (B,w)eG x (B,i0)eG

where @ is a *-isomorphism between Mg, and Mg, , and E is the

canonical conditional expectation from Mg onto Dg, and where
Iﬂt . MX e d (C

1s the conditional expectation (in fact, it is a bounded linear functional)
defined by

Int(g)dgfj. gdy, for all g € My.
X

We call Ex the diagonal conditional expectation on MGX- With respect

to the new conditional expectation Ex, we can obtain the following

freeness condition on Mg, , different from the Subsection 4.3 above.

Theorem 4.3. Let Mg, be a framed graph von Neumann algebra
and let Ex : Mg, — Dg be the diagonal conditional expectation on
MGX, where Dg is the diagonal subalgebra of the graph von Neumann

algebra M. Then
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where

def *-180

MX:e = UN(MX’ Me) = MX ®c Me’

for all e € E(G), where Mx = L*(X, n), and M,’s are Dg-free blocks
Of Mg.

Proof. Let Ex : Mg, — Dg be the diagonal conditional expectation,
Ex =(I,; ®E)o ®.

Then, we have

with respect to the conditional expectation E(, by Subsection 4.3

*—i_SO r
Mx ®c Dg
ecE(G)

My ®c M,

e Mx ® M.,

ecE(G)

with respect to the conditional expectation I,

r
= *DG Mx.,. u

ecE(G)

4.4. Calculus on X affected by graph groupoids. Let X = (X, By, u)

be a given Borel space and let G be a directed graph with its graph
groupoid G. For a given Borel space X, we can naturally determine the

calculuson X; for any B € By, we have the integrals of the characteristic

functions Xg,

| Apdu=uB)
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Recall that all elements g of My = L”(X, p) are approximated by the
simple functions formed by

Z tB XB, with tB e C.
BeByx

Thus, the integrals IX g du are well-defined, and hence we have calculus

on X.

We extend such an integration on X to multi-dimensional integration

on the framed graph von Neumann algebra M, Gy - Then, this will show

how the calculus on X is affected by the (outside) structures, represented
by the graph groupoids G of graphs G. Notice that the changes of the
calculus on X from G becomes not only be multi-dimensional, but also be
dictated by the admissibility on G.

Such changes are explained by the conditional expectation
Ex =(I,; ® E)o ®, where I,; : Mx — C is the integration on X, and
E : Mg — Dg is the canonical conditional expectation introduced in

Subsection 3.3, and ® 1is a *-isomorphism between Mg, and
My ®¢c Mg.

Let a € Mg, with its expression,

a= Z B,w) LB, w)-
(B,w)eGx

eV (). 0 (BIV(G)

Then the integral of a, as a C value (recall that Dg =

can be defined by the expectation Ex(a), i.e.,

EX(a) = (Int ® E) Z t(B, w)XB ® Z Ly,

BeBx,4(B,w)*0 weG, (B, )0

= J Z LB, wyxpdn || E Z Ly
XBEBX’t(B,w)¢0 wEG,t(Byw)io
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= Z (B, w)d(B) Z L, | (4.4.1)
BeBx 4B, 1)#0 veV(G),t(B,y)*0

Denote the multipliers

Z 4B, w)p.(B), and Z L,
BeBx,t(B,uw)*0 veV(G), (B, y)#0

of (4.4.1), by I, and E,, respectively. We can realize that, if

g = Z tB, wxB € Mx,
BEBX,t(B’w)?iO

with its integral

J‘ gdH:Ia,
X

then such an integral ng du of g is changed (in MGX) by the

expectation E, of

Lw (S MG 5
weG, (B, yw)#0

dependent upon the elements w of the graph groupoid G satisfying that
LB, w) * 0.

V(G|

Observation. The above discussion shows that the C valued

integration on the von Neumann algebra MGX is well-defined by the
diagonal conditional expectation Ex, and it is dependent upon the
integration I,; = _[ e dp on X, and the admissibility on the graph

groupoid G. This means that the integration I,; on X is affected by the
dynamics of C determined by G. 0
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5. Fractal Graphs

In the previous section, we consider (i) how the calculus on a Borel

space X = (X, By, u) is extended to the calculus on a certain operator

algebra B(HGX ) (in particular, on a von Neumann algebra MGX ), and

(i1)) how the obstacles G (certain operators, in particular, partial

isometries G embedded in L(Gy )) in the von Neumann algebra Mgy
changes the integration I,; = _[ X dp on X in the operator-valued
integration Ex : Mg, — Dg.

To find the concrete examples for applications, we consider a special
kind of graphs, and their graph groupoids. We would like to handle “good”
graphs having certain regularity, represented by the fractal property, in
short, the fractality. In this section, we will concentrate on introducing
fractal graphs and their graph groupoids, called the graph fractaloids.
Roughly speaking, fractal graphs are the graphs generating the fractality
in their graph groupoids. The study of fractal graphs and graph
fractaloids, itself, is interesting (see [9], [12], [15], [16], [19], and [21]).

Remember that all our graphs are assumed to be connected and
locally finite. (Of course, the results of Section 4 hold for the general
cases. Hence, we did not consider / mention this assumption much, but
from now, this assumption is very much needed!) Recall that a graph G is
connected, if for any pair (v, v') of “distinct” vertices, there always exists

a reduced finite path w in the graph groupoid G of G, such that

1

w=vwv,and w = =1 w . Also, a graph G is said to be locally finite,

if all vertices v of G has finite degrees, i.e., deg(v) < oo.
In this section, we concentrate on introducing fractal graphs, graph

fractaloids, and their basic properties. The definition of fractal graphs is

based on the connectedness and the locally-finiteness.
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5.1. Graph trees. In this section, we construct the graph tree 7,

induced by a given connected locally finite directed graph G. Throughout
this section, all graphs are automatically assumed to be connected, and

locally finite.

Recall that a directed graph, having neither multi-edges nor loop
finite paths, is called a directed tree. If a directed tree G has at least one

vertex v, satisfying that deg;,(v) = 0, is said to be a directed tree with

root(s). The vertices with 0 in-degree are called the roots of G. Suppose,

we have a directed tree G with roots, and assume that we fix one root vg.
Then G is called a rooted tree with its root vy. Now, let GG be a rooted tree
with its root vy, and assume that the direction of G is one-flow from the
root vg. Then G is a one-flow rooted tree. A one-flow rooted tree is

infinite, then it is said to be a growing rooted tree. Assume that a growing
rooted tree G satisfies that, for any v € V(G), the out-degree deg,,,(v)

are all identical. Then G is a regular tree. In particular, if deg,,,(v) = N,
for all v € V(G), then this regular tree G is called the N-regular tree. To

emphasize the regularity of this tree G, we denote this N-regular tree G

by 7 5. For instance, the 2-regular tree 7 4 is as follows:

/

/
o—>c<o
e .

To= o

AN .
o—>.£>o

N

'
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Let G be a graph, and let
N = max{deg,,;(v) : v € V(G)} < winN.

Consider the shadowed graph G of G. Define the subsets EY of E (G )
by

E’l‘j,dgf{eeE(@):e:vev’},

for all (v, V) eV ( G )2 . Remark that v and v’ are not necessarily distinct
in V( G ). It is possible that there exists a pair (vy, vg) of vertices such
that E;’f is empty. By definition,
E(G)= | JE
(v,v)
Then construct the graph tree 7 of G, by re-arranging the elements
V(G)UE (6: ), up to the admissibility on the free semigroupoid
F* (G), as follows. First, fix any arbitrary vertex vy €V (G )=V (G).

Then arrange ee U _ Ellj , by attaching them to vy, preserving the
veV(G)

direction on G, 1.e., we can construct

Vo U1

<N

/""-\
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Then, we can have the above finite rooted tree with its root vy. Of course,

if the set U _ E

3 is empty, then we only have the trivial tree G
veV(G) 0

()

with V(G,,) = {vo}, and E(G,;) = &. The edges in the column (") is

induced by the re-arrangement of the elements in U _ Ell))o’ and the
veV(G)

. . k% .
vertices in the column (7" ) means the re-arrangement of the “terminal”

vertices of the edgesin U _ E .
veV(G) 0

Now, let v; e V(G) be an arbitrary chosen vertex of the shadowed
graph G of G, re-arranged in (™). Then, we can do the same process for

vy, i.e, arrange the edgesin U _ Ell: (if it 1is not empty), by attaching
veV(G) !
them to v;, preserving the direction on G, i.e., we can construct

o/

w® — @ °
N N\
° °

**) (3) (89)

Here, the column ($) is induced by the re-arrangement of the edges in

U E’s, and the vertices in the column ($$) means the re-
veV(G) !

arrangement of the terminal vertices of the edges in U _ Ell)’l. We can
veV(G)
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do the same processes for all vertices in (**). Now, notice that it is
possible that one of the vertices in the columns (™) or ($$) can be v,.

For instance, if Egg is not empty (equivalently, if vy has an incident

loop-edge), then vy is located in (** ). Similarly, vy can be located in
($$). For instance, if vy, has its incident length-2 loop finite path in
F* ((A} ), then vy is in ($$). We admit such cases, i.e., a same vertex of
V( G ) can appear several times in this rooted-tree-making process.

Do this process until it ends. If G is infinite, then do this process

infinitely. The one-flow rooted tree, induced by this process, with its root

vo 1s denoted by 7, . Notice that, from this process, we can embed all

elements (possibly several or infinitely many repeated times) in
V(G)UE(G) into Ty, Preserving their admissibility!

Definition 5.1. Let G be a connected locally finite directed graph
with its shadowed graph G, and let T v, Pe arooted tree with its root vy,
induced by G, by the above process. We say that, this process the graph-

tree making, and the tree 7, is called the vy-tree of G.

By definition, every connected locally finite directed graph G has

‘V(a )‘-many vertex-trees of G. Notice that, the vertex-trees of G are

determined by the vertices and edges in the “shadowed” graph G of G.
The following proposition is easily proven by the definition of the vertex-

trees of a given graph, and by the connectedness of our graphs.

Observe now several examples for the construction of vertex-graphs

of a given graph.
Example 5.1. Let O; be a one-vertex-1-loop-edge graph with

V(0;,) = {v}, and E(O;) = {e =vev}.
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Then, the shadowed graph (/)\1 of O; has its vertex set V ( 61 ), identical
to V(0 ), and its edge set

V(0 )={v}, and E(O;)={e e},

Then, we can construct the v-graph of O; by

e—1
v
/! ®
e
7T, = v'®
=
=]
& v
\ ®
v i e v
[ ] — L ] —_ [ ]
e—1
e !
) e v
L ] — [ ]
e L
v
[ ]

We can realize that the v-graph 7T, is graph-isomorphic to the 2-regular
graph 7,.
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Example 5.2. Let G, be the two-vertices-one-edge graph with
V(Ge) = {v1, vz}, and E(G,) = {e = v; evg}.
Then, the shadowed graph é; is a directed graph with
V(G,)={v, vy}, and E(G,)={e e},

So, we can have the v; - tree TUI of G,

e el e el
Ty =V ®e> 0 —> o > 0 5 ..o
1 v2 u1 U2
and the vg-tree 7, of G,
e} e el e
Tv =UVUg®—> & — 6 — 0 — -,
z U1 U2 U1

Therefore, both 7, and 7,
7.

v, are graph-isomorphic to the 1-regular tree

Example 5.3. Let Ty ; be the finite tree with

V(TQ,I) = {vl’ Vg, 03},
and
E(Ty1) = {e; = vy €1 vy, ey = vy €3 v},

le.,

.’U3

Then, after finding, the shadowed graph 7/’2\1 of Ty 1, we can have the

vy -tree T, of Ty q,
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V2
o
€1
Vo V1
® — ® — o
61_ 1 €92 Vg
€1
7;)1 — v, @
€2
-1
€2 ey V2
o — o — o
V3 U1
€2
L ]
U3
and the vy-tree T,, of Ty,
Vo
L]
€1
-1
U2 €q U1 (]
L ] — — [
U3
€1
-1
€
’1;}2 - V2 o o o b
(351
€9
€5 ! U1 (=3 V2
[ ] — [ ] — [ ]
U3
€2
[ ]

Us
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and the v3-graph 7, of Ty,

Ua

[ ]
€1
—1
v ('] m”m €9
[ ] — L ] — [ ]
v3
€1
—1
€2
/1;3 — U3 [ ] — [ ]
V1
€2
1
€q U1 €1 Vo
[ — L ] — [
v3
(D))
L]

Vs

We can check that 7, v and 7, are graph-isomorphic, but neither of

U3

them is graph-isomorphic to ’TUI.
Example 5.4. Let K, be the one-flow circulant graph with
V(Ky) = {v1, va,

and

E(Ky) ={e; = vy e vy, g = vy e .
Then, the shadowed graph I/{; of Ky has
V(Ky)={v, vy}, and E(Ky)={¢", &'

By using the tree-making process, we obtain that the v;-graph Ty, and

the vy- graph ’TU2 are graph-isomorphic to the 2-regular tree 75.
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Example 5.5. We say that C,, is the complete graph with n-vertices,
if for any pair (v, v') of distinct vertices in V(C,, ), there exists a unique
edge e € E(C,,), such that e = vev’, where n € N\ {l}. We can easily
check that deg,,;(v) = n -1, for all v € V(C, ). Thus, we can check that
the graph trees 7, are graph-isomorphic to the 2(n —1)-regular tree
To(n-1), forall v e V(Cy).

Example 5.6. Let 7 be the N-regular tree, for N € N. Assume
that vy is the root of 7. It is easy to check that the v-trees 7, are
graph-isomorphic to the 2N-regular tree 79y, whenever v # vy in

V(7T ). However, the vy-tree T, is not graph-isomorphic to 7.

As we have seen in the previous examples, sometimes, the vertex-
trees of a given graph are graph-isomorphic from each other, or not. In
general, the vertex-trees of a graph G are not graph-isomorphic from

each other.

5.2. Fractal graphs. Let G be a connected, locally finite directed graph
with its graph groupoid G. By Subsection 5.1, for the given graph G, we
can construct the vertex-fixed graph trees {7, : v € V(G)} of G. Define

the graph fractaloids and the fractal graphs.
Definition 5.2. Let G be a connected locally finite directed graph and
(T, : v e V(G)}, the collection of all vertex-trees of G. Also, let
N = max{deg,,;(v): v e V(G)} in G,
where deg,,;(.) means the out-degree of vertices. If every v-tree 7, of G

is graph-isomorphic to the 2N-regular tree 7oy, for all ve V ( G ), then

the graph groupoid G of G is called the graph fractaloid. Also, we call the
graph G, a fractal graph, i.e., a connected locally finite directed graph,

generating a graph fractaloid, is said to be a fractal graph.
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In [15] and [16], we define graph fractaloids by the labelling process
on graph groupoids, determined by automata theory. Automata theory let
us detect the fractality on graph groupoids. Even though our definition of
graph fractaloids are defined without automata settings, it is well-defined
in the same sense of [15] and [16], because our vertex-fixed graph trees,
in the sense of Subsection 5.1, are equivalent version of automata trees,
in the sense of [15].

Now, we introduce the characterizations of graph fractaloids of [15].

Theorem 5.1 (see [15]). Let G be a connected locally finite directed
graph with its graph groupoid G, where N is the maximum of the out-

degrees of the vertices of G. And let Ay be the graph automaton
in the sense of [15], having the corresponding automata actions

(A, :weF* (G)}.

(1) G is a graph fractaloid, if and only if the automata actions act

fully on the 2N-regular tree Top;.

2) G is a graph fractaloid, if and only if the all automata trees,

induced by the automata actions A,,’s, are graph-isomorphic to the 2N-

regular tree Top;. 0

The statement (1) of the previous theorem provides the automata-
theoretical characterization of graph fractaloids, and the statement (2)
provides the algebraic characterization of graph fractaloids. These two
characterizations show that indeed our vertex-fixed graph trees in the
sense of Subsection 5.1 are the graph-theoretical re-expression of the
automata trees of graph groupoids in the sense of [15]. Thanks to these
characterizations, we found the pure graph-theoretical characterization of

graph fractaloids in [21].

Theorem 5.2 (see [21]). Let G be a connected locally finite directed
graph with

N = max{deg,,;(v): v e V(G)}, in G.
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Then, the graph G is a fractal graph, if and only if
deg,,: (V) = N = deg;, (v), for all v e V(G). 0

The above characterization gives the best way to detect the fractality of
graph groupoids, simply by checking the out-degrees and in-degrees of
vertices of a given graph. It is interesting that the fractality on an
algebraic structure, graph groupoids, is detected by the pure

combinatorial data, degrees of vertices.

The above graph-theoretical characterization of graph fractaloids has

its equivalent version.

Theorem 5.3 (see [21]). Let G be a connected locally finite directed
graph with

N = max{deg,,;(v) : v e V(G)}, in G.
Then, the graph G is a fractal graph, if and only if

deg(G) (v)=2N, in G,

out

for all UeV(@):V(G), where G is the shadowed graph of G, and

(G)

oui () means the out-degree of vertices of G. O

deg

By the previous two theorems, we can have the following easy tools to
detect the fractality of graph groupoids.

Proposition 5.4. Let G be a connected locally finite directed graph.

(1) If there is a vertex vy of G, such that deg,,;(vy) = deg;,(vy) in G,

then G is not fractal.
(2) If there is a pair (v, V') of vertices, such that degy, (v) # degy, (v"),

for some ky, ko € {in, out}, then G is not fractal.

(3) If G contains either a sink or a source, then G is not fractal. 0
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Recall that a vertex v € V(G) is a sink (or a source), if deg,,;(v) = 0
(resp., deg;,(v) = 0). The statement (3) of the previous proposition shows

that any regular trees are not fractal, since the roots of the trees are

sources.

Example 5.7. (1) The one-vertex-n-loop-edge graph O,,, with

V(0,) = {v},

and

is fractal, for all n € N, since
degoyt (v) = n = deg;, (v), in O,
where v is the unique vertex of O,,.
(2) The one-flow circulant graph K,,, with
V(K,,)={v1, ..., v},
and

. . def
E(K,) = {ej =vjevjq]=1..,m, with v,, 1 = vy}

is fractal, for all m € N\ {1}, since
degoy(vj) =1 = deg;,(vj), in K,,,
forall j =1,..., m.
(3) Let C,, be the complete graph with
V(C,)={v1, ..., Uy},

and

E(Cp)=1ej:i=jefl, .., mj,
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where e;; means the edge connecting the vertex v; to the vertex v;, for

i, jefl,...,m}, for m e N\ {1}. Then C,, is a fractal graph, since
degoy(vj) = n =1 = deg;,(vj), in Cp,

forall j=1,..., m.

(4) The infinite linear graph L, graph-isomorphic to

2> @ > 8 =3 e
is a fractal graph, since
degoy (v) = 1 = deg;y (v),

for all v e V(L).

For more interesting example, see [10].
5.3. Radial operators of graph fractaloids. Let G be a fractal graph
with its graph fractaloid G, and let My be the graph von Neumann
algebra of G. Let Tz € Mg be the radial operator in the sense of

Subsection 3.4. In [15], we consider the spectral information of 7, by

o0
n=1>

computing the Dg-valued free moments {E(T )} where Dg is the

diagonal subalgebra of Mg, and E is the canonical conditional
expectation from Mg onto Dg. Since T is self-adjoint in M, the free
distributional data represents the spectral information of 7(;. So, instead
of observing the spectral data of T;, we computed free moments of it.
The following theorem is the main result of [15].

Theorem 5.5 (see [15]). Let G be a fractal graph, and Tg € Mg, the
radial operator of the graph fractaloid G of G. Then, the Dg-valued free

moments are
E(Tg) = |LNy(n)| - 1pg,

for all n € N, where L% (n) is given in Appendix. 0
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It is interesting that the operator-valued (or amalgamated) free

moments of 7T is completely determined by the scalar-values
{|£3V(n)|}f:1-

5.4. Richness of graph fractaloids. In this section, we briefly consider
the mathematical richness of graph fractaloids. There are “sufficiently”
many graph fractaloids, induced by connected locally finite (even finite)

graphs (see [10]). Moreover, in [10], we showed that, whenever we choose

a pair (n, m) e NxN_, where N, e Ny {o}, there always exists at

least one fractal graph G.

Theorem 5.6 (see [10]). Let F 4101 be the set of all connected locally
finite fractal graphs. If

deg,,;(v) = n, in G,
[(n, MG € Frqeat| Vv € V(G), and
m = |V(G)|

is a subset of F ,qcta1,> for all (n, m) € N x N, then all subsets [(n, m)] of
F ractal Q€ nonempty, and

def
fractal = (n,m)lgleNo( [(n> m)]) t

Notice that the subsets [(n, m)] of F,4q are in fact, the equivalence
classes in F 447, 1.€., if we define an equivalence relation R on F,yezq1

by

G R Gy gE(Tgl) = E(Tg2 ), forall n e N,

then the relation R is an equivalence relation, and hence [(n, m)|’s are
the equivalence classes in F ¢, Where T, are the radial operators of
the graph fractaloids G, of G, for k =1, 2. For any graph fractaloid
G € [(n, m)], induced by a fractal graph G, we have that
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E(Tc]?e) = |£(;z(k)|'1(c@m, for all £  N.

The equivalence relation R 1is called the spectral relation, and the
equivalence classes are called the spectral classes. Also, the classification
in the above theorem is said to be the spectral classification of graph
fractaloids (see [10]).

Notice that the free groups, which are “fractal groups” (see [39]), are
contained in the spectral class [(n, 1)]. In general, if m > 1, then the
elements in [(n, m)] are groupoids with fractality, which are not fractal

groups.
6. Framed Fractal Graphs

Throughout this section, all graphs are connected and locally finite.
Let G be a fractal graph with its graph fractaloid G. As in Section 4, we
can construct the framed graph Gy, with the frame X = (X, By, 1), a

Borel measure space, and the corresponding framed groupoid G x. By the

graph-theoretical characterization of graph fractaloids, the given graph G

satisfies
deg,, (V) = N = deg;,(v), in G,
for all v € V(G), where
N = max{deg,,;(v): v e V(G)} € N, in G.

It is anatural question: How can we establish the fractality on the framed
groupoid Gx ?

Let G be a connected locally finite graph and let X = (X, By, u) bea
Borel measure space. Let Gx be the framed graph of G with the frame X,

and let G x be the framed groupoid of Gx.
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The fractality of Gy may not be detected by the same tool, like in
Section 5 (or, like in [15]), because we “framed” the graph G (or the
groupoid G) with the Borel measure space X = (X, By, n). However,
remark that the algebraic properties of the framed groupoid Gy is
completely dependent upon those of the graph fractaloid G. So, we may /

can extend our fractality to that of framed groupoids. The definition of

framed fractaloids may seem artificial, but it is reasonable.

Definition 6.1. Let G be a connected locally finite graph with its
graph groupoid G. Let Gx be the framed graph of G with the frame X =
(X, Bx, n). The framed graph Gy is said to be a framed fractal graph, if
G is a fractal graph. Also, the framed groupoid Gy of Gy is called the
framed (graph) fractaloid of G with the frame X (or, of Gx).

Roughly speaking, a framed fractal graph Gx is the topological
space, generated by the directions (or the admissibility) of the given
graph G, which satisfies the fractality.

In Section 6, we observed that, if G is a connected, “finite” graph, then
there always exists a finite fractal graph G, such that G < G,. So, we

can obtain the following corollary.

2

Corollary 6.1. Let Gx be a framed graph of a connected ‘finite
graph G, with the frame X, and let Gx be the framed groupoid of Gx.

Then, there always exists a framed fractaloid G%, with the same frame X,

such that Gy is a subgroupoid of G%.

Proof. Let G be given. Then, there exists a fractal graph G,, such
that G < G,. So, we obtain the groupoid-inclusion, G ¢ G,, where G,
is the graph fractaloid of G,,. [

Here, we want to emphasize that, even though the fractality on the

framed fractaloid Gy is determined by that of G, the properties
(dependent upon the fractality) of Gx and those of G are different. By

the very definition, a graph fractaloid G is a pure algebraic object having
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the fractality, and a framed fractaloid Gy is an algebraic, topological,

and measure-theoretical object. Thus, our definition of framed fractaloids

enlarges the study of the measure-preserving fractality to dynamical
systems, i.e., our framed fractaloids will give the W*- dynamical systems

in a certain operator algebra, measure-preserving fractality!

Also, by Subsection 5.4, for any fixed frame X, we can have the

following classification of framed fractaloids for the fixed frame.
Corollary 6.2. Let F fgctal be the set of all framed fractaloids of
framed fractal graphs, with the fixed frame X, i.e.,

Fctal dgf{GX : Gx is the framed fractaloid}.

Then, for any (n, m) € N x N, there exists at least one fractaloid Gy e

FX al, such that G e[(n, m)] © Frgetars where G is the graph
fractaloid of G, whenever Gyx is the framed groupoid of the framed graph

Gx. Moreover,

X
F ractal = [(n: m)]X:

(n,m)eUNxNoo
where [(n, m)]x is the equivalence class in fﬁfml defined by

Gx €[(n. mx < G € [(n. m] < Froctar,
where F,q4eiq1 and [(n, m)| are given in Subsection 5.4. 0

By the previous corollary, we can have the following corollary:

Corollary 6.3. Let FI"%¢ po the set of all framed groupoids of

ractal

framed fractal graphs. Then

Frame _
‘Fractal - LI LI
X:Bounded Borel Measure Space \ (n, m)eNxN,

.l ).
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7. Framed Radial Operators

Let G be a connected locally finite graph and X = (X, Bx, nu) be a
Borel measure space, and let Gy be the framed graph of G with the
frame X, having its framed groupoid Gy. Also, let (HGX, L) be the

canonical framed graph representation of Gy, in the sense of Section 4,

consisting of the framed graph Hilbert space H, Gy def g x ® Hy and the

framed groupoid action L of Gy, acting on Hg,, where
Hy = I*(X, n), and Hg = I%(G).

In this section, we define a certain operator TG, on Hg, , induced

by the framed graph Gx. The importance of this Hecke-type operator

Tg, 1s that: it explains how the framed groupoid Gx act in an operator

X
algebra B(Hgy, ).

In Subsection 3.4, we define the radial operator T; of G, as an

element of the graph von Neumann algebra M = C[G]" (in B(Hg)), by
Te= Y, (Le+Le)= D, (Le+La).
ecE(G) ecE(G)

And we already know, how 7T; acts on the graph Hilbert space Hq (see
[16]), in particular, where G is a fractal graph. In Subsection 5.3, we

introduce the free moment computations E(TC?) of Tg: if G is a fractal

graph, then
E(T§) = |£5(R)] - 1om,
where
n = max{deg,,;(v): v e V(G)} e N, in G,
and

m = |V(G)| e N,
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where £%(k) is the collection of all lattice paths in R2, satisfying the
axis property.

For any B e By, there exists the corresponding characteristic
function 35 in My = L”(X), regarded as a multiplication operator with
its symbol 35 on Hy = L2(X). For instance, the identity operator 1 My
of Mx is identical to yx. Notice that, as an operator in My, every ypg

is a projection, for all B € By.

Assumption. Without loss of generality, in the rest of this paper, we

regard the framed graph von Neumann algebra M Gy as its *-isomorphic
von Neumann algebra Mg, = My ®c Mg, ie., we use Mg, and
Mgy, alternatively. 0

Now, define the framed radial operators of the framed groupoid G x.

Definition 7.1. Let Gx be a framed graph with its framed groupoid

Gy, and let MGX be the framed graph von Neumann algebra of Gy.

Define “a” framed radial operator TCI;X of Gx by the element in M Gy

1B ® Tg,

where T is the radial operator of G, in the sense of Subsection 3.4, in

the graph von Neumann algebra Mg, for B € Bx. In particular, this

radial operator T(fX is called the B-framed radial operator of Gyx. If

B = X, then we call this X-framed radial operator Té( , the full radial

operator of Gy.

By definition, the B-framed radial operator TGBX satisfies

def
T(?X =18 ®Tg
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=XB®{ > <Le+Le_1)J

ecE(G)

> (5 ® (Lo + L)

ecE(G)

> (s ®L)+(xp ®L,1))
ecE(G)

Z (xp ®Ly)+ (x5 ® L,)")

ecE(G)

D (Lo + Lg oyt
ecE(G) ’

for all B € By. Different from the radial operator T; € M of the graph
groupoid G, the framed radial operators TGBX of a framed groupoid Gy

is also determined by the data, represented by the (measures of) Borel

sets Bin By, too. It is easily shown that, for any singleton sets {t} are

contained in By (if they exist well), then the radial operator T of G,

and the {t}- framed radial operators Tc{;t)}( are identically distributed over
the diagonal subalgebra Dg = (C®‘V(G)‘, for all t € X.

Let TC?X be the B-framed radial operator of M, Gy - The operator TC?X
is understood as an amalgamated random variable in the framed Dg-
valued graph W"- probability space (Mg, , Ex ) over Dg = Dg, . So, we
can consider the free distributional data of T(?X, for the fixed B € By.

To do that, we compute the D -valued free moments

{Ex((T5, ) Vi1 = Doy = Da-
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In particular, we are interested in the case, where the given framed

groupoid Gy is a framed fractaloid. By using the free distributional data

of the radial operator T(; of the graph fractaloid G (see Subsection 3.2),
we can compute the free moments of framed radial operators T(fX of the
framed fractaloid Gy, for all B € Bx. And, we can realize that the k-th
moment E((TC?X Ye) of TGBX is just a scalar multiplication of E(Té" ), for

all 2 e N.

Theorem 7.1. Let TC?X € (Mgy, Ex) be the B-framed radial

operator of the framed fractaloid Gx of the framed fractal graph Gy, for

B € Bx. Assume that

N = max{deg,,(v): v e V(G)}, in G.

Then, the Dg-valued moments of TGBX are determined by

Ex((T8)*) = (W(B)-|£X () 1p5
forall k € N.
Proof. Fix k£ € N. Assume that G is a fractal graph, satisfying that
degoy (v) = N = deg;y(v), in G,

for all v € V(G). By definition, the framed graph Gx of G, with the

frame X, is a framed fractal graph, and hence, the framed groupoid Gy
of Gx is a framed fractaloid. Let TGBX be the B-framed radial operator,
for B € Bx. Then

k

Ex(T )') = Ex EZ(G)<L(B,e) +Lig.))
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k
= Eyx [ Z ((xg ® L,) + (xB ® L, ))J
ecE(G)

k
=(L®E) [XB ®[ Z (Le+Le_1)D ,
)

ecE(G
by the bimodule property of ®
k
= (n®E)| 1k ®{ Z (L, +Le_1)J :
ecE(G)

Since

k _ _
Liy,w) = L[ ] = Lyt

YN..NY,w"
k

E ook
=y ®L » =2y ®Ly,

forall (Y, w) e Gx, and k € N,

k
- (W(B)| E { > (Le+ L )]

ecE(Q)

= (W(B)) (E(T})),

where T is the radial operator of the graph fractaloid G, since the
radial operator 7T in the usual graph von Neumann algebra Mg is
defined by

Tg = Z (Le + L 1),
ecE(G)

ie., for any B € By, a framed radial operator TéBX satisfies

Ex((T8)*) = (W(B)(E(T§)) in Dg.
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Therefore,
Ex((TE ") = (u(B)-|£8(R)) - 1.

for all £ € N, and B € By, since N is the maximum of the out-degrees of

vertices of (G, and since
E(T§) = [L4(R)| - 1pg,

for all £ € N (see Subsection 3.2), where L£%(k) is the collection of all

length-% lattices satisfying the axis property. [
By the previous theorem, we can obtain the following corollary:
Corollary 7.2. Let Té{X be the full radial operator of the framed

fractaloid Gyx. If the frame X = (X, Bx, u) of the framed fractal graph

Gx is a Borel probability measure space, in the sense that W(X) = 1, then
the operator TG); € Mg, , and the radial operator T € Mg of the graph

fractaloid G are identically distributed over Dg.

Proof. By the previous theorem,
k
Ex(Tg,)") = (W(X)-[£ (®)]) - 1pg.

for all £ € N. Since the Borel measure space X is a probability measure

space,
ux) = 1.
Thus,
Ex((T4)") = £k (®)| - 1p, = E(TE),

for all £ € N, under the fractality of G. [
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Appendix: Lattice paths

Let R? be the 2-dimensional R-vector space. As usual, we regard R2
as the R-plane, induced by the horizontal axis (or the x-axis) and the

vertical axis (or the y-axis). Let N € N be a fixed number. Then, for the

given number N, we define the lattices [, ..., [y by the vectors in R2 by
L, %1, o), forall k=1, ..., N.

To distinguish the point (o, B) in R?, and the vector (a, B), connecting

the origin (0, 0) to the point (o, B) in R2, we denote the vector (o, B), by

(o, B), for all (a, B) € R2. Then, the lattices L, ..., Iy are understood as
the upward lattices. Define now the downward lattices [_;, ..., [_y by

1, %, —et), forall k=1, ..., N.

Then, the set Xy = {l1, ..., l.n | is said to be the (lattice) labelling set,
for N € N. Let Xy be the labelling set. Then, we can generate lattice

paths in R2 by the following rule: Construct a lattice path /; /;, by

transforming the starting point (0, 0) of l; to the ending point (1, aiei) of
l

;, where

1, if i efl,.., N},
& =
S = if ie{-1,..., - N},

for all ie{+l,...,+N}. By wusing the iterated attaching (or
ol

e {#1,..., = N}, for all n e N. By Lp, denote the set of all such

transforming), we can construct the lattice paths [ for

u In’

i
J
lattice paths, generated by the labelling set X, and we call Ly, the

lattice path set generated by X .

Let I =1 ...l; € Ly. Then, the length ||| of [ is defined to be n, the

cardinality of lattices in X, generating the lattice path [. Define a
subset £y (n) of Ly by
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L) e Ly [ =n},

for all n € N. Then, the lattice path set £, is decomposed by

L = La(k),
N kl;|1 ~ (k)

where || means the disjoint union. The subsets £y (k) of £y are called
the length-k lattice path set.

Let I € £, and suppose the lattice path / end on the horizontal axis,
in other words, the ending point of the path [ is on the horizontal axis in
R2. Then, we say that the lattice path [ satisfies the (horizontal) axis
property. Define the subsets L} (k) of £y (k) by

dgf{l e L (k) : I satisfies the axis property}.

Ly (k)
It is easy to check that, by the definition of the lattices l.q, ..., L, the
subsets L47(k) are empty, whenever k is odd in N. In [14] and [40], we

computed the cardinalities of £ (k), for N, k € N.

Proposition 7.3 (see [14] and [40]). Let N € N. Then |L%(n)| = 0,

whenever n is odd in N. For all k € N,

|£%(2k)| = Z Civs ver Johs

(J15--- Jor )eCap

where
(]1, eey J2k) € {i']., eey iN}
Cor = (15 -+ Jor) J1 <2 S <o :
S0
il
where the summand Ciswees Jop satisfies the following recurrence

relation: If there exists 1 < d < 2k and s € {1, ..., 2k} such that
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Citveondo = Choee s ds2 Js2 -0 s
d-times

then it satisfies that

Chryens jor, Js2dso 5 ds = Cjyjs 420 Ca)

d-times

with

cj,j,j,...,j = ]., fOT‘ all _] € {il, ey + N},

def m!
where ,C, = ————— forall n <m e N. 0
mEr nl(m - n) f

For instance, if c_3 _3 9 _1 _11,1,2,3,3 € C10, then we can compute it

by
€-3,-3,-2,-1,-1,1,1,2,3,3
= (c_3,-3,-2,-1,-1,1,1,2) (1 C2)
=(c_3,-3,-2,1,-1,1,1)(5C1) (10 C2)
=(c_3,-3,-2,-1,-1)(7C2) (gC1) (19 C2)
= (c_3,-3,-2)(5C2)(7C2)(5C1)(10C2)
= (0—3,—3)(301)(502)(702)(801)(1002)

= (3C1)(5C2)(7C2)(5C1) (19Co)
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