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Abstract 

In this paper, we construct graphs having a fractal property, and groupoids 
induced by the graphs. The fundamental properties of them and their 
corresponding graph von Neumann algebras, and their radial operators are 
studied. 

1. Introduction 

We are concerned with countable directed graphs G as they act on 
measure spaces. Our motivation comes in part from the study of weighted 
graphs used in infinite (very large) electric networks, in statistical models 
from physics, stochastic processes indexed by some fixed directed graph, 
or in the study renormalization and of fractals. These applications involve 
some similarity of scales. This in turn dictates a particular special 
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interaction between the particular graph G under consideration, and its 
environment X. The latter will be modelled on a measure space, a framed 
system; see detailed definitions below. 

1.1. Overview. Our aim is to identify certain similarity scales and 
renormalization structures in graphs. They will allow us to connect global 
aspects of a system G, X with its local parts, similarity of scales in the 
small and in the large. While this may be done in a variety of ways in 
general, we will focus here on one such approach, made precise with our 
use of radial operators for the system under consideration. 

 Our motivation comes in part from operator algebras, more 
specifically, from the theory of one-parameter groups of automorphisms 
acting on a von Neumann algebra. Our questions have a measure-
theoretic flavor, which favors the use of von Neumann algebras, as 

opposed to -∗C algebras. 

A graph is a set of objects called vertices (or points or nodes) 
connected by links called edges (or lines). In a directed graph, the two 
directions are counted as being distinct directed edges (or arcs). A graph 
is depicted in a diagrammatic form as a set of dots (for vertices), joined by 
curves (for edges). Similarly, a directed graph is depicted in a 
diagrammatic form as a set of dots joined by arrowed curves, where the 
arrows point is the direction of the directed edges. We are interested in 
countable directed graphs. 

More precisely, a directed graph G is a pair ( ) ( )( ),, GEGV  with 

direction on ( ),GE  where ( )GV  is the vertex set, consisting of all vertices 

of G, and ( )GE  is the edge set, consisting of all directed edges of G. The 

direction on G creates the initial vertices and the terminal vertices of 
edges. 

The algebraic structures, induced by directed graphs, have been 
studied recently (e.g., see [3] through [18]). In particular, in [3], the graph 
groupoids are defined by the groupoids induced by graphs (also, see [22] 
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and [38]). Depending on such groupoidal structures, we could construct 
von Neumann algebras preserving the combinatorial properties of graphs, 
and depending on the algebraic reduction of graph groupoids: We realized 
that, under the suitable representation, graph groupoids are nicely 
embedded in an operator algebra, and they generate the groupoid 

( )-or- ∗∗ CW dynamical system in the operator algebra. Thus, by the 

groupoid crossed product, we defined graph von Neumann algebras in [3], 

[4], and we characterized -∗C algebras generated by certain operators in 

[14], [17], and [18]. 

1.2. Motivation. The main purpose of this paper is to introduce new 
algebraic structures having certain fractal property, which is called 
fractality. In [15], we introduced these structures, called the fractaloids. 
Fractaloids in the sense of [15] are the graph groupoids, in the sense of 
Subsection 3.2 (below), satisfying certain additional conditions. In [12], 
we call the fractaloids, the graph fractaloids, to emphasize that they are 
special “graph” groupoids. 

In [14], we conjectured that the connected “finite” directed graphs, 
generating graph fractaloids, are: 

(i) the one-vertex-multi-loop-edge graphs ,nO  with 

( ) { },On vOV =  

and 

( ) { },,,1 nn eeOE …=  

where je  are the directed edges connecting Ov  to ,Ov  for all .N∈n  For 

instance, 

•
}  

is the one-vertex-one-loop-edge graph, or 

(ii) the one-flow circulant graphs ,nK  with 

( ) { },,,1 nn vvKV …=  
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and 

( ) { },,,,,, 1,,1342312 nnnn eeeeeKE −= …  

where ije  means the edge connecting the vertex iv  to the vertex ,jv  for 

{ }.1\N∈n  For instance, 

 

is the one-flow circulant graph ,3K  or  

(iii) a suitable connection or unions of the graphs in (i) and (ii). And 
this conjecture is concluded in [9]. We realized that there are many more 
connected finite directed graphs generating graph fractaloids. Indeed, the 
conclusion of [9] shows the richness of fractaloids: There are sufficiently 
many “finite” fractal graphs (and hence there are sufficiently many 
fractal graphs). 

Futhermore, in [10] and [19], we showed that, for any pair ( ) N∈mn,  

,∞× N  where { },∞=∞ ∪NN  there exists at least one corresponding 

fractal graph, i.e., if ractalF  is the collection of all connected locally finite 

fractal graphs, then it is decomposed by the equivalence classes ( )[ ],, mn  

called the spectral classes, by 

( )
( )[ ]mn

mnractal ,
, ∞×∈

=
NN

F  

(also, see below Section 3). 

Independently, the measure framing on graphs have been studied by 
the authors (see [42]). Roughly speaking, the measure framing on an 
arbitrary directed graph G is to attach a Borel measure space 

( ),,, µ= XXX B  equipped with a topological space X, a Borel -σ algebra 

XB  of X, and the (bounded) Borel measure ,µ  on G. 
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By understanding the combinatorial object G, as a discrete topological 
space ( ) ( ),GEGVG ∪=  we can construct a product topological space 

,GXGX ×=  called the (measure) framed graph of G framed by X. In 

particular, X is said to be the frame of .XG  Then the set 

,GG ×= XX B  

forms a (categorial) groupoid in the sense of [38] (also, see Subsection 2.6 
below), under the binary operation, 

( ) ( ) ( ),,,, 21212211 wwBBwBwB ∩=  

for all ,, 21 XBB B∈  and ., 21 G∈ww  The groupoidal property (or the 

admissibility) of the graph groupoid G  governs that (resp., framed 
admissibility) of .XG  Then, the pair ( )⋅= ,XX GG  is a well-defined 

groupoid and we call it the framed (graph) groupoid of G, with the frame 
X. This construction, itself, is interesting, since it provides a way to 
construct groupoids, with uncountably many elements. For instance, if 
we take a frame X by ([ ] [ ] ),,,1,0 1,0 µB  where [ ]1,0  is the closed interval 

in ,R  and [ ]1,0B  is the Borel -σ algebra, generated by all closed subsets 

of [ ],1,0  and µ  is the usual Lebesgue measure on [ ],1,0B  then the framed 

groupoid ,XG  for any graph groupoid ,G  contains uncountably infinitely 

many elements. 

The main result of [42] is the characterization of the groupoid -∗W  

algebras, generated by framed groupoids: If [ ]wXGXM GC=  is the 

groupoid von Neumann algebra, generated by a framed groupoid ,XG  

then 

,isomorphic-
GXG MMM X C⊗=

∗  

where 

( ) ( ),, µ== ∞∞ XLXLM X  
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and 

[ ]wGM GC=  

is the usual graph von Neumann algebra of G, in the sense of [3] through 
[17]. Here, we construct framed fractaloids, which is fractaloids, induced 
by the measure framing. 

2. Definitions 

In this section, we provide the motivation of this paper. Measure 
(space) framing on graphs and the study of fractals on graphs have been 
studied independently. In this paper, we provide a connection between 
them. 

2.1. Measure framing on graphs. Let A be a ( )-or- ∗∗ WC algebra in a 

ring ( )HB  of (bounded linear) operators on a Hilbert space H. Let Γ  be a 

group and assume that there exists a group action γ  of ,Γ  acting on A, in 

the sense that: (i) gγ  are -∗ automorphisms of A, for all ,g Γ∈  and (ii) for 

any ,,g 21 Γ∈g  

,2121 gggg γ=γγ D  

where ( )D  is the usual composition. Then, the triple ( )γΓ,,A  is called a 

group ( )-.,resp- ∗∗ WC dynamical system. It is well-known that such a 

group dynamical system ( )γΓ,,A  generates the corresponding group 

( )-.,resp- ∗∗ WC crossed product algebra ,Γ×= γAA  and these group 

crossed product operator algebraic structures have been widely studied. 

Let R  be the time axis equipped with the binary operation, the usual 
addition ( ),+  i.e., we have a group ( )., += RR  Assume that there exists 

a group action γ  of R  acting on A, such that 

(i) AAt →γ :  are -∗ automorphisms for all ,R∈t  

(ii) ( ) ,0 aa =γ  for all ,Aa ∈  
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(iii) ( ) ,11 AAt =γ  for all ,R∈t  

(iv) ,2121 tttt +γ=γγ D  for all ., 21 R∈tt  

Then, in particular, the triple ( )γ,, RA  is said to be a dynamical 

system with flow (flowed by R ). 

More generally, let A be given as above, and let X  be a (categorial) 
groupoid. Assume that, there exists a groupoid action α  of X  satisfying 
that: (i) xα  are -∗ endomorphisms on A, for all ,X∈x  and (ii) for any 

,, 21 X∈xx  

.2121 xxxx α=αα D  

Then similar to the group case, we have a groupoid ( )-.,resp- ∗∗ WC  

dynamical system ( ),,, αXA  and the corresponding groupoid crossed 

product algebra .Xα×= AA  Since all groups are groupoids, groupoidal 
version of dynamical systems, and crossed product algebras are the 
enlarged concepts for group version of them. 

In particular, if A is given as before, and G  is a “graph groupoid” (in 
the sense of Subsection 3.2 below), then we call the dynamical system 
( ),,, αGA  a graph dynamical system. 

Let ( )µ= ,, XXX B  be an arbitrary given Borel measure space, and 
let ( )α,, XA  be a groupoid dynamical system. Then, the calculus on X 

may / can be affected (or changed also) by the dynamics of A. To study 
such an affection (or a change), we introduce the “framing” on graphs in 
Section 4 below (also, see [20]). Roughly speaking, the calculus on X is 
framed on .X  Then, we can consider the calculus on ,X  preserving the 
calculus on X. 

In “our” representations in the sense of Section 4, the groupoid 
algebras generated by framed groupoids are characterized as tensor 
products. This means that the changes of the calculus on X are 
understood to be tensorized under certain representations for framed 
groupoids. 
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2.2. Fractals on graphs. While the measure framing on graphs have 
been studied, the fractal property, which is called the fractality, for short, 
of graphs have also been studied (see [9], [12], [15], [16], [19], and [21]). In 
[13] and [14], we showed that, if there is a certain kind of family G  of 

partial isometries on a Hilbert space H, then G  induces a directed graph, 

called the corresponding graph G of ,G  and it generates a groupoid GG  

embedded in ( ).HB  It is easy to check that the graph groupoid G  of G is 

groupoid-isomorphic to ,GG  i.e., the operator-algebraic structures of ,G  

embedded in ( ),HB  is explained by the elements of .G  However, the 

analysis of GG  is still very complicated. So, the relatively easy (but not so 

easy) cases were needed. The first example constructed under this idea 
was the groupoids GG  with fractality. 

So, independently, graph groupoids with fractality, called the graph 
fractaloids, have been studied. We call the graphs generating graph 
fractaloids, the fractal graphs. We defined the operator ,GT  induced by a 

fractal graph G, in a certain von Neumann algebra ,GM  and observed 

the free distributional data of ,GT  by computing the free moments of it. 

Such data give us the spectral information of ,GT  and hence explain how 

the graph fractaloid G  of G works in the von Neumann algebra .GM  

In particular, in [9], we showed that, there are sufficiently many 
fractal graphs generating graph fractaloids, which are not just fractal 
groups (in the sense of [39]). 

2.3. Frames and fractals. In this paper, as application of the study of 
framed graphs and framed groupoids, we introduce graph fractaloids and 
the corresponding “framed” fractaloids. It demonstrates nicely how our 
measure framing works in an operator algebraic structure. In particular, 
we can check how the fractality of graph fractaloids preserves the frames, 
which are measure spaces, through fractal graphs, in ( ).HB  
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3. Background 

In this section, we introduce the concepts we will use in context. 

3.1. Free probability. Let AB ⊂  be von Neumann algebras with 
,11 AB =  and assume that there is a conditional expectation 

,: BAEB →  satisfying that: (i) BE  is a ( )-C linear map, (ii) ( ) ,bbEB =  

for all ,Bb ∈  (iii) ( ) ( ) ,2121 baEbbabE BB =  for all Bbb ∈21,  and 
,Aa ∈  (iv) BE  is continuous under the given topologies of A and B, and 

(v) ( ) ( )∗∗ = aEaE BB  in B, for all .Aa ∈  

The algebraic pair ( )BEA,  is said to be a B-valued -∗W probability 

space. Every operator in ( )BEA,  is called a B-valued (free) random 

variable. Any B-valued random variables have their B-valued free 
distributional data: B-valued -∗ moments and B-valued -∗ cumulants of 

them. Suppose saa ,,1 …  are B-valued random variables in ( ),, BEA  

where .N∈s  The ( )-,,1 nii … th joint B-valued -∗ moments of saa ,,1 …  

are defined by 

(( ) ( ) ( )),2
2

1
1 21 ni

n
ii r

in
r
i

r
iB abababE …  

and the ( )-,,1 kjj … th joint B-valued -∗ cumulants of saa ,,1 …  are 
defined by 

( ) ( )
( )

( )
( ),1,,,,, 1

1
1
1 1:1 k

r
jk

r
jB

kNC

N

n

r
jk

r
j

B
k kj

k
jkj

k
i ababEababk πµ





=








π
∈π
∑ ……  

for all ( ) { }n
n sii ,,1,,1 …… ∈  and for all ( ) { } ,,,1,,1

k
k sjj …… ∈  for 

,, N∈kn  where Bbj ∈  are arbitrary and { },,1,,,,, 11 ∗∈kn jjii rrrr ……  

and ( )kNC  is the lattice of all noncrossing partitions with its minimal 

element ( ) ( ) ( ){ }kk ,,2,10 …=  and its maximal element ( ){ },,,2,11 kk …=  
for all ,N∈k  and µ  is the Moebius functional in the incidence algebra 

.I  Here, ( )…π:BE  is the partition-depending B-valued moment. 
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For example, if ( ) ( ) ( ){ }5,3,2,4,1=π  in ( ),5NC  then 

( ) ( ( ) ) ( ).,,,, 5432154321: aEaaaEaEaaaaaE BBBB =π  

Recall that the lattice ( )nNC  of all noncrossing partitions over { }n,,1 …  

has its partial ordering ”“ ,≤  

∀⇔θ≤π
def

 a block V in ∃π,  a block B in θ  s.t., ,BV ⊆  

for ( ),, nNC∈θπ  where ”“⊆  means the usual set inclusion, for all 
.N∈n  Also, recall that the incidence algebra I  is the collection of all 

functionals 

( ) ( )( ) C→×ξ
∞

=
nNCnNC

n∪ 1
:  

satisfying that ( ) ,0, =θπξ  whenever ,θ>π  with the usual function 
addition ( )+  and the convolution ( )∗  defined by 

( ) ( )
( )

( ) ( ),,,, 21
def

21 θσξσπξ=θπξ∗ξ
θ≤σ≤π

∑ N

n
 

for all ., 21 I∈ξξ  If we define the zeta functional I∈ζ  by 

( ) ,1, =θπζ  for all θ≤π  in ( ),nNC  for all ,N∈n  

then its convolution-inverse in I  is the Moebius functional .µ  Thus, the 
Moebius functional µ  satisfies that 

( ) ( )
( )

( )
( ) ,01,and11,0 1

1 =πµ−=µ
∈π

−
− ∑ n

nNC

N

nn
n

nn c  

where 







+
=

k
k

kck
2

1
1def  is the k-th Catalan number, for all .N∈k  

The B-valued freeness on ( )BEA,  is characterized by the B-valued 

-∗ cumulants. Let 1A  and 2A  be -∗W subalgebras of A having their 

common -∗W subalgebra B. We say that 1A  and 2A  are free over B in 
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( ),, BEA  if all mixed B-valued -∗ cumulants of 1A  and 2A  vanish. The 

subsets 1X  and 2X  of A are said to be free over B in ( ),, BEA  if the 

-∗W subalgebras ( )BXvN ,1  and ( )BXvN ,2  of A are free over B in 

( ),, BEA  where ( )21, SSvN  means the von Neumann algebra generated 

by sets 1S  and .2S  Similarly, we say that the B-valued random variables 

x and y are free over B in ( ),, BEA  if the subsets { }x  and { }y  are free 

over B in ( )., BEA  

Let 1A  and 2A  be -∗W subalgebra of A containing their common 

-∗W subalgebra B, and assume that they are free over B in ( )., BEA  

Then, we can construct a -∗W algebra ( )21, AAvN  of A generated by 1A  

and .2A  We denote it by .21 AA B∗  Suppose there exists a family 

{ }Λ∈iAi :  of -∗W subalgebras of A containing their common -∗W  

subalgebra B. If they generate A and if they are free over B from each 
other in ( ),, BEA  then the von Neumann algebra A is the B-valued free 

product algebra .i
i

B A
Λ∈

∗  

Suppose a von Neumann algebra A is a B-free product algebra .i
i

B A
Λ∈

∗  

Then A is Banach-space isomorphic to the Banach space 

( ) 













 ⊗⊗⊕⊕⊕

≠≠≠
∞
=

−

o
iBB

o
iiiiiiin nnn

AAB …
… 113221 ,,,1  

with 

,def BAA jj i
o
i =  for all ,,,1 nj …=  

where B⊗  is the B-valued tensor product. 

Let ka  be “self-adjoint” B-valued random variables in a B-valued 

-∗W probability space ( ),, k
Bk EA  for .2,1=k  We say that the two self-

adjoint operators 1a  and 2a  are identically distributed over B, if 
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( ) ( )k
B

k
B aEaE 2

2
1

1 =  in B, for all .N∈k  

3.2. Graph groupoids. Let G be a directed graph with its vertex set 
( )GV  and its edge set ( ).GE  Let ( )GEe ∈  be an edge connecting a vertex 

1v  to a vertex .2v  Then, we write ,21 veve =  for emphasizing the initial 

vertex 1v  of e and the terminal vertex 2v  of e. For a graph G, we can 

define the oppositely directed graph ,1−G  with ( ) ( )GVGV =−1  and 

( ) =−1GE { ( )},:1 GEee ∈−  where each element 1−e  satisfies that 

21 veve =  in ( ),GE  with ( ),, 21 GVvv ∈  if and only if ,1
1

2
1 veve −− =  in 

( ).1−GE  This opposite directed edge ( )11 −− ∈ GEe  of ( )GEe ∈  is called 

the shadow of e. Also, this new graph ,1−G  induced by G, is said to be the 

shadow of G. It is clear that ( ) .11 GG =−−  

Define the shadowed graph lG  of G by a directed graph with its 

vertex set ( l ) ( ) ( )1V G V G V G−= =  and its edge set ( l ) ( )E G E G E= ∪  

( )1 ,G−  where 1−G  is the shadow of G. We say that two edges 

1111 veve ′=  and 2222 veve ′=  are admissible, if ,21 vv =′  equivalently, 

the finite path 21 ee  is well-defined on l.G  Similarly, if 1w  and 2w  are 

finite paths on G, then we say 1w  and 2w  are admissible, if 21 ww  is a 

well-defined finite path on G, too. Similar to the edge case, if a finite path 
w has its initial vertex v and its terminal vertex ,v′  then we write 1vw =  

.2vw  Notice that every admissible finite path is a word in ( l ).E G  

Denote the set of all finite path by ( l ).FP G  Then ( l )FP G  is the subset 

of ( l ) ,E G ∗  consisting of all words in ( l ).E G  

We can construct the free semigroupoid ( l )G+F  of the shadowed 

graph l ,G  as the union of all vertices in ( l ) ( ) ( )1,V G V G V G−= =  and 

admissible words in ( l ) ,FP G  with its binary operation, the admissibility. 
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Naturally, we assume that ( l )G+F  contains the empty word .0/  Remark 

that some free semigroupoid ( l )G+F  of lG  does not contain the empty 

word; for instance, if a graph G is a one-vertex-multi-edge graph, then the 

shadowed graph lG  of G is also a one-vertex-multi-edge graph, and it 

induces the free semigroupoid ( l ) ,G+F  which does not have the empty 

word. However, in general, if ( ) ,1>GV  then ( l )G+F  always contain the 

empty word. Thus, if there is no confusion, we always assume the empty 

word 0/  is contained in the free semigroupoid ( l )G+F  of l.G  

By defining the reduction (RR) on ( l ) ,G+F  we can construct the 

graph groupoid .G  

Definition 3.1. Let G be a countable directed graph with its 

shadowed graph l.G  The graph groupoid G  is a set of all “reduced” words 

in the edge set ( l )E G  of l ,G  equipped with the inherited admissibility on 

the free semigroupoid ( l ) ,G+F  where the reduction (RR) on G  is defined 

as follows: 

     (RR)                                 1 1and ,ww v w w v− − ′= =  

for all ,G∈′= vwvw  with ( l ), .v v V G′ ∈  

In fact, graph groupoids are indeed categorial groupoids. 

3.3. Graph von Neumann algebras. In this section, we briefly 
introduce graph von Neumann algebras of the graphs (see [3] through 
[2]). Let G be a directed graph with its graph groupoid .G� Then, we can 
construct the corresponding Hilbert space GH  by 

(l ) (l )
( )def 2 .

r
G v w

v V G w FP G
H l

∈ ∈

   
= ⊕ ξ ⊕ ⊕ ξ =   
   

C C G  
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Then, this Hilbert space GH  is called the graph Hilbert space induced by 

G. Notice that, by definition, the Hilbert space GH  has its Hilbert basis 

{ ( l ) }: .w rw FP Gξ ∈  

Define the canonical (left) groupoid action 

( ),: GHBL →G  

of ,G  acting on ,GH  by 

( ) ( ),def
Gw HBLwL ∈=  for all ,G∈w  

where wL ’s are the multiplication operators with their symbols ,wξ  with 

their adjoint ,1−=∗
ww LL  for all .G∈w  

The pair ( )LHG ,  is called the canonical representation of .G  

Definition 3.2. Let G be a graph with its graph groupoid ,G  and let 

( )LHG ,  be the canonical representation of .G  Define the groupoid -∗W  

algebra GM  by ( )[ ]wL GC  in ( ).GHB  This groupoid -∗W algebra GM  is 

called the graph von Neumann algebra of G. Define a -∗W subalgebra 

GD  of GM  by 

(l )
( )def .G v

v V G
D R

∈
= ⊕ ⋅C  

It is called the diagonal subalgebra of .GM  

Remark 3.1. In [6], [14], and [15], we observed the right 
multiplication operators wR ’s, for all ,G∈w  instead of using left 

multiplication operators wL ’s. Then, we can define the right graph von 

Neumann algebra ( )[ ]wop
G RM GC=  in ( ),GHB  where ( )GHBR →G:  

is the right groupoid action of ,G  acting on ,GH  i.e., def ,w w w wR ′ ′ξ = ξ  for 



FRAMES, FRACTALS AND RADIAL OPERATORS … 347

all ., G∈′ww  Notice that op
GM  and GM  are anti- -∗ isomorphic, because 

indeed, the right graph von Neumann algebra op
GM  is the opposite         

-∗ algebra of the graph von Neumann algebra .GM  Thus, they share the 

fundamental properties. 

Notice that, every element x in the graph von Neumann algebra GM  

of G has its expression, 

.with, C
G

∈= ∑
∈

www
w

tLtx  

Let GD  be the diagonal subalgebra of .GM  Define the canonical 

conditional expectation 

GG DME →:  

by 

(l )

def ,w w v v
w v V G

E t L t L
∈ ∈

 
=  

 
∑ ∑

G
 

for all .Gww
w

MLt ∈∑
∈G

 Then, the pair ( )EMG ,  is a -GD valued        

-∗W probability space over ,GD  in the sense of Voiculescu (see [43] and 

[51]). 

Definition 3.3. The -GD valued -∗W probability space ( )EMG ,  is 

called the graph -∗W probability space induced by the given graph G. 

By [3] and [4], we have the following two results: 

Theorem A (see [3] and [4]). Let GM  be the right graph von 
Neumann algebra of G. Then, it is -∗ isomorphic to the -GD valued 

reduced free product algebra 
( )

e
GEe

r
D M

G
∈

∗  of the -GD free blocks ,eM  where 
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def=eM  ( )Ge DvN ,G  in ( ),GHB  where eG  are the subgroupoid of ,G  

induced by { },, 1−ee  for all ( ).GEe ∈   ⁭ 

Theorem B (see [4]). Let GM  be the right graph von Neumann 

algebra of G, and let 
( )

e
GEe

r
D M

G
∈

∗  be the -GD valued reduced free product 

algebra of eM ’s, which is -∗ isomorphic to ,GM  in ( ).GHB  

(1) If e is a loop edge, then the corresponding -GD free block eM  is  
-∗ isomorphic to the group von Neumann algebra ( ),ZL  generated by the 

infinite cyclic abelian group ,Z  which is also -∗ isomorphic to the -∞L  

algebra ( ),T∞L  where T  is the unit circle in .C  

(2) If e is a non-loop edge, then eM  is -∗ isomorphic to the matricial 
algebra ( ),2 CM  consisting of all ( )22 × -matrices.  ⁭ 

3.4. Radial operators of graph groupoids. Let G be a countable 
directed graph with its graph groupoid ,G  and let GM  be the graph von 
Neumann algebra of G. Define an operator GT  by 

(l ) ( )
( )1

def= ,G e e e
e E Ge E G

T L L L −

∈∈

= +∑ ∑  

in .GM  

Definition 3.4. This operator GT  is called the radial operator of .G  

Let G be a countable directed graph. Then, every vertex v of G has 
the following quantities: 

( ) { ( ) } ,:deg def veeGEevout =∈=  

called the out-degree of v (in G) 

( ) { ( ) } ,:deg def eveGEevin =∈=  

called the in-degree of v (in G), and 
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( ) ( ) ( ),degdegdeg def vvv inout +=  

called the degree of v (in G), for all ( ).GVv ∈  

Now, let G be a connected, locally finite graph. Recall that a graph G 
is connected, if for any pair ( )vv ′,  of “distinct” vertices, there always 
exists at least one element w in the graph groupoid G  of G, such that 

,vwvw ′=  and .11 vwvw −− ′=  Recall also that a graph G is locally finite, 
there are only finitely many incident edges for every vertex of G, 
equivalently, G is locally finite, if and only if ( ) ,deg ∞<v  for all 

( ).GVv ∈  

For the given connected locally finite graph G, define the quantity N 
by 

{ ( ) ( )} .in:degmaxdef GGVvvN out ∈=  

Then, by the locally finiteness of G, this number N is less than .∞  In [15], 

we computed the -GD valued moments ( )n
GTE  and the -GD valued 

cumulants ( ),,, GGn TTk …  for all .N∈n  Also, in [14], we computed 
them, where G  is a graph fractaloid. 

By the very definition, the radial operators are self-adjoint in ,GM  in 

the sense that .GG TT =∗  So, the -GD valued moments and the -GD  
valued cumulants of GT  contain full free distributional data of .GT  Such 
data for GT  show how G  works on .GH  

4. Measure Framing on Graphs 

Throughout this section, let G be an arbitrary directed graph. 
However, for our main purpose, the readers may / can assume all graphs 
are connected and locally finite. However, we emphasize that the 
following results of this section is applicable for the general cases. Let 

( )µ= ,, XXX B  be a Borel space, where X is a topological space, XB  is a 

Borel -σ algebra of X, and µ  is a Borel measure on .XB  



ILWOO CHO 350

4.1. Framed graphs and framed groupoids. From now on, regard the 
combinatorial object G as a discrete topological space ( ) ( ),GEGV ∪  also 
denoted by G. Then, we can construct the topological space 

,GXGX ×=  

under the product topology of X and G, i.e., the topological space XG  is 
the set 

{( ) ( ) ( )},,:, GEGVyXxyxGX ∪∈∈=×  

equipped with the product topology of X and ( ) ( ).GEGVG ∪=  

Definition 4.1. The topological space XG  is called the framed graph 
of G with the frame X. 

The elements ( )yx,  of a framed graph XG  can be understand as the 
elements x of X having their movements y determined by (the direction 
of) G. If Gy ∈  is a vertex, then ( ) XGyx ∈,  can be regarded as Xx ∈  at 

the position y (without movement). So, the elements ( )1, yx  and ( )2, yx  

are distinct elements in .XG  If Gy ∈  is an edge ,vyvy ′=  with ∈′vv,  
( ),GV  then ( )yx,  is Xx ∈  moving from the position v to the position .v′  

Also, the elements ( )yx,  of XG  can be understand the movements 

,Gy ∈  with their properties represented by .Xx ∈  For our purpose, we 
consider the elements ( )yx,  of XG  as the movements Gy ∈  with their 
properties .Xx ∈  So, similarly, the elements ( )yx ,1  and ( )yx ,2  of XG  
are regarded as distinct elements: Even though, they have same 
movements determined by ,Gy ∈  their properties are distinct, whenever 

21 xx ≠  in X. 

Then define the Cartesian product 

,GG ×= XX B  

induced by .XG  As a set, XG  is 

{( ) }.,:, G∈∈ wBwB XB  
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The elements ( )wB,  of XG  are regarded as the movements determined 

by the movements kee ,,1 … ( l ) ,E G∈  where G∈w  is the “reduced” 

word kee …1  in ( l ) ,G+F  for ,N∈k  preserving or maintaining the 

property ,XB B∈  represented by the measure ( ).Bµ  Or, alternatively, 

we may / can understand ( ) XwB G∈,  as the property ,XB B∈  

represented by ( ),Bµ  preserved (or maintained) by the movement 

.1 G∈= keew …  

Now, define the binary operation ( )⋅  on XG  by 

( ) ( ) ( ),,,, 21212211 wwBBwBwB ∩=  

for all ( ) ,, Xkk wB G∈  for ,2,1=k  with the empty element X0/  of XG  

( ) ( ),0,0, /=/=∅ Bw X  

for all ,G∈w  and ,XB B∈  where ∅  is the empty set, and 0/  is the 

empty element of .G  Such a binary operation is called the framed 
admissibility on the set .XG  

Notice that the pair ( )⋅= ,XX GG  of the set XG  and the framed 

admissibility ( )⋅  is indeed a groupoid with the groupoid inverses; 

( ) ( ),,, 1def1 −− = wBwB  

for all ( ) ,, XwB G∈  where G∈−1w  is the shadow of .G∈w  We call the 

groupoid inverse ( ) 1, −wB  of ( ),, wB  the framed shadow of ( )., wB  

Define now subsets ( n )XV G  and ( n )r XFP G  of XG  by 

( n ) { ( ) ( l ) }def , : , ,X XV G B v B v V G= ∈ ∈B  

and 

( n ) { ( ) ( l ) }def= , : , ,r X X rFP G B w B w FP G∈ ∈B  
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where lG  is the shadowed graph of G, in the sense of Subsection 3.2. We 

call ( n ) ( n ), ,X r XV G FP G  the framed vertex set and the framed reduced 

finite path set, respectively. Clearly, without loss of generality, the 

notation nXG  can be understand as the framed graph l.X G×  This framed 

graph n l
XG X G= ×  is called the framed shadowed graph of the framed 

graph .XG  Similarly, if we use the notation ,1−
XG  it means the framed 

graph ,1−× GX  where 1−G  is the shadow of G. We call ,1−
XG  the framed 

shadow of .XG  (Notice here that the framed structures n, ,X XG G  and 
1−

XG  are not purely combinatorial objects. They are topological spaces, 

determined by X and G, or l ,G  or ,1−G  respectively.) 

Definition 4.2. The pair ( )⋅,XG  of the set XG  and the framed 

admissibility ( )⋅  is called the framed (graph) groupoid of G with the 

frame X. We denote this pair simply by .XG  

Remark 4.1. (1) All elements of the framed groupoid XG  are the 

algebraic objects equipped with certain property represented by the Borel 
sets, as we discussed before. So, the framed admissibility on XG  means 

that, whenever the algebraic object w with the property ( ( ) ∈wBB ,.,i.e  

)XG  meets with the admissible successor y with the property 

( ( ) ),,.,i.e XyCC G∈  then w follows y, determined by ,G∈wy  with the 

restricted property .CB ∩  

(2) The study of framed graphs and framed groupoids are interesting, 
since it provides a way to create groupoids with “uncountably” infinitely 
many elements. For instance, if we take a measure space X as a standard 
Borel measure space ( )( ),,,1,0 ρB  where ρ  is the usual Lebesgue 

measure on the open interval ( ),1,0  then for any countable directed 

graphs G with their graph groupoids ,G  the framed groupoids XG  

contain uncountably infinitely many elements, as groupoids. 
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By the very definition, we have the following proposition: 

Proposition 4.1. Let ( )kG  be graphs with their graph groupoids 
( ),kG  and let kX  be measure spaces, for .2,1=k  Let ( )k

Xk
G  be framed 

graphs with their framed groupoids ( ) ,k
Xk

G  for .2,1=k  If kX  are 

equivalent, and if the shadowed graphs ( )nkG  of ( )kG  are graph-

isomorphic, then the framed groupoids ( )k
Xk

G  are groupoid-isomorphic.  ⁭ 

4.2. Canonical representation of framed groupoids. Similar to the 
canonical representation of graph groupoids, we consider that of “framed” 
groupoids. Throughout this section, let G be a countable directed graph 
with its graph groupoid ,G  and ( ),,, µ= XXX B  a fixed Borel measure 

space. Recall that, the graph G induces its graph Hilbert space 

( ),2 GlHG =  

and the Borel space X induces its corresponding Hilbert space 

( ),,2 µ= XLHX  

consisting of all square integrable measurable functions on X. Recall also 
that GH  has its inner product, 

,, 2121 ,
def

wwGww δ=>ξξ<  

for all Hilbert basis elements ,kwξ  for all ,G∈kw  for ,2,1=k  where δ  

means the Kronecker delta, and XH  has its inner product, 

,, 21
def

221 µ=>< ∫ dgggg
X

 

for all ,Xk Hg ∈  for ,2,1=k  in particular, 

( ),, 212 2121 BBdBB
X

BB ∩µ=µχχ=>χχ< ∫  
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for all ,, 21 XBB B∈  where 

( )
def 1, if ,

0, otherwise,B
x X

x
∈χ = 


 

for all .XB B∈  

By construction, we can determine the representation of the framed 
groupoid XG  of G, with the frame X, canonically. Define the Hilbert 

space XGH  by 

.def
GXG HHH X ⊗=  

The inner product ><,  is defined by 

( ) ( ) ( ) ,, 212211 ,21
def

,, wwwBwB BB δµ=>ξξ< ∩  

,,, 2121 2 GwwBB >ξξ<>χχ<=  

for all ( ) ,, Xkk wB G∈  for .2,1=k  For instance, 

( ) ( ) ( ) ( ) ,,allfor,, ,, XwBwB wBB G∈µ=>ξξ<  

and hence 

( ) ( ) ( ) .,allfor,, XwB wBB G∈µ=ξ  

Definition 4.3. This Hilbert space XGH  is called the framed graph 

Hilbert space of .XG  

Then all elements ( ) XwB G∈,  act on ,XGH  as the multiplication 

operators with their symbols ( ),,wBξ  for all ( ) ,, XwB G∈  i.e., we can 

define the groupoid action 

( )XGX HBL →G:  

by 
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( ) ( ) ,, ,
def

wBLwBL =  

the multiplication operator with its symbol ( ) ., XGwB H∈ξ  Notice that 

the operator ( )wBL ,  acts on XGH  by 

,on XGGXwB HHHL =⊗⊗χ  

where Bχ  is the characteristic function, for all ,XB B∈  and ,Xq ∈  and 

wL  is the multiplication operator with wξ  on .GH  Then L is indeed a 

groupoid action of ,XG  since: 

 (( ) ( )) ( )2121 ,2211 ,, wwBBLwBwBL ∩=  

( ) ( )2211 ,, wBwBL=  

( ) ( )2211 ,, wBwB LL=  

( ) ( ).,, 2211 wBLwBL=  

This action L is called the canonical (left) groupoid action of .XG  

Definition 4.4. The pair ( ),, LH XG  with the framed graph Hilbert 

space ,XGH  and canonical groupoid action of ,XG  is called the canonical 

(left) representation of the framed groupoid .XG  Define the groupoid von 

Neumann algebra XGM  by 

[ ( )] ,def w
XG LM X GC=  

as a -∗W subalgebra of ( ).XGHB  Then, it is called the framed graph von 

Neumann algebra of G, with the frame X (or, of XG ). 

Let XGM  be the framed graph von Neumann algebra of .XG  Define 

a -∗W subalgebra XG:M  of ( ) ( )GX HBHB C⊗  by the tensor product 

algebra, 
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GXXG MM C⊗=def
:M  

of ( ),, µ= ∞ XLM X  and the usual graph von Neumann algebra =GM  

[ ] .w
GC  

Definition 4.5. Now, define the linear map 

XGGXM :: M→Φ  

by 

( )
( ) ( )

( )
( )( ),,

,

def
,,

,
wBwB

wB
wBwB

wB
LtLt

XX

⊗χ=












Φ ∑∑

×∈∈ GG B

 

for all 
( )

( ) ( ) ,,,
,

X
X

GwBwB
wB

MLt ∈∑
∈G

 with ( ) ., C∈wBt  

Notice that every element y of XGM  has its expression 

( )
( ) ( ) ( ) .with, ,,,

,
C

G
∈= ∑

∈
wBwBwB

wB
sLsy

X

 

The map Φ  of the above definition is -∗ multiplicative. Thus, Φ  is a 

-∗ homomorphism. Also, by the very definition of the framed groupoid 

,XG  it is equipotent (or bijective) to the set .G×XB  So, the map Φ  is a 

generator-preserving bijection, and hence Φ  is a -∗ isomorphism. Thus, 

the von Neumann algebras ( )XX GG HBM ⊆  and ( ⊗⊆ XXG HB:M  

)GH  are -∗ isomorphic. 

Observation. .iso-
GXG MMM X C⊗=

∗  ⁭ 

By defining the framed diagonal subalgebra XGD  of XGM  by 

( ) (n )
( )

def -iso
,

,
,

X
X

G X GB v
B v V G

D L M D∗

∈
= ⊕ = ⊗CC  
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where GD  is the diagonal subalgebra of the usual graph von Neumann 
algebra GM  of G, we can define the conditional expectation 

XX GG DME →:0  

by 

( )
( ) ( )

( ) (n )
( ) ( )

def
0 , , , ,

, ,

.
X X

B w B w B v B v
B w B v V G

E t L t L
∈ ∈

 
  =
 
 
∑ ∑

G
 

This also shows that there do exist the amalgamated free probability on 
,XGM  too. 

By definition of the conditional expectation ,0E  over the framed 
diagonal subalgebra ,XGD  the (reduced) freeness of the framed graph 

von Neumann algebra XGM  is completely determined by the (reduced) 

freeness of the graph von Neumann algebra ,GM  i.e., we can have that: 

Theorem 4.2. Let XGM  be the framed graph von Neumann algebra 

of a framed graph ,XG  and let XGD  be the framed diagonal subalgebra 

of .XGM  Let 0E  be the conditional expectation defined in the previous 

paragraph. Then 

( )

,,
iso-

eX
GEe

r
DG MM

XGX
∈

∗
∗=  

with the -XGD free blocks ,: eXM  

( ) ( ),,, iso-def
: XGeXXeeX HBinMMMMvNM C⊗==

∗  

for all ( ).GEe ∈  

Proof. The framed graph von Neumann algebra XGM  is 

-∗ isomorphic to the von Neumann algebra ,GX MM C⊗  where XM  is 

the von Neumann algebra ( ),, µ∞ XL  and GM  is the usual graph von 
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Neumann algebra of G. Let’s denote GX MM C⊗  and GX DM C⊗  by 

XGM  and ,XGD  respectively, where GD  is the usual diagonal 

subalgebra of .GM  

Define now a conditional expectation 

XX GG DME →:0  

by 

,def
0 Eid ⊗=E  

where di  means the identity map, and E is the canonical conditional 

expectation from GM  onto ,GD  i.e., 0E  is the linear map satisfying that 

( ) ( ) .allfor,0 XGxgxEgxg ME ∈⊗⊗=⊗  

Then, the amalgamated -∗W probability spaces ( )0, EM XG  and 

( )0, EM XG  are equivalent in the sense of Voiculescu over iso-∗
=XGD  

.XGD  This shows that the -XGD freeness on XGM  (depending on 0E ), 

and the -XGD freeness on XGM  (depending on 0E ) are equivalent. So, 

( )
,iso-defiso-













∗⊗=⊗==
∈

∗∗ MeMMMM
GEe

r
DXGXGG GXX CCM  

where eM ’s are the -GD free blocks ( )evN G ’s for all ( )GEe ∈  

( )
( )eX

GEe

r
DM MMvN

GX
,iso-

∈
⊗

∗
∗=

C
 

( )

( ( ))XXG GeX
GEe

r HBMM iniso-
C⊗∗=

∈

∗
D  

( )

.:
iso-

eX
GEe

r
D M

XG
∈

∗
∗=  ■ 
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The above theorem shows that the free probability is also used to study 
framed graph von Neumann algebras under certain conditions. 

4.3. Framed graph von Neumann algebras. Let G be a directed graph 
with its graph groupoid ,G ( )µ= ,, XXX B  be a given Borel space, and 

let ( )., µ= ∞ XLM X  Let XG  be the framed graph of G with the frame X, 

and XG  be the framed groupoid of .XG  Also, let =XGM  [ ( )]wXL GC  be 

the framed graph von Neumann algebra in ( ).XGHB  

Remember that GM  has the amalgamated ( -GD valued) reduced free 

structures; 

( )
,iso-

e
GEe

r
DG MM

G
∈

∗
∗=  

with its -GD free blocks ( ),ee vNM G=  for all ( ),GEe ∈  where eG  are 

the subgroupoids of ,G  consisting of all reduced words only in { }., 1−ee  

In the previous section, we defined the framed diagonal subalgebra 
,XGD  and the conditional expectation .:0 XX GG DME →  We concluded 

the amalgamated freeness on the framed graph von Neumann algebra 
;XGM  

( )

,:
iso-

eX
GEe

r
DG MM

XGX
∈

∗
∗=  

where 

( ) ,, iso-def
: eXeXeX MMMMvNM C⊗==

∗  

for all ( ),GEe ∈  where eM ’s are the -GD free blocks of the graph von 

Neumann algebra GM  of G, i.e., the -XGD valued freeness is naturally 

determined on ,XGM  by the -GD valued freeness of ,GM  tensorized by 

.XM  
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By using the -∗ isomorphic relation of the framed graph von 

Neumann algebra ,XGM  and ,GXG MMX C⊗=M  we define now a 

new conditional expectation GGX DME X →:  by 

( ) ,def Φ⊗= DEIE ntX  

i.e., 

( )
( ) ( )

( )
( )

( )
,

,
,

,
,,

,



























χ=













∑∑∑
∈∈∈

w
wB

BwB
wB

ntwBwB
wB

X LEtILtE
XXX GGG

 

where Φ  is a -∗ isomorphism between XGM  and ,XGM  and E is the 

canonical conditional expectation from GM  onto ,GD  and where 

C→Xnt MI :  

is the conditional expectation (in fact, it is a bounded linear functional) 
defined by 

( ) .allfor,def
X

X
nt MgdggI ∈µ= ∫  

We call XE  the diagonal conditional expectation on .XGM  With respect 

to the new conditional expectation ,XE  we can obtain the following 

freeness condition on ,XGM  different from the Subsection 4.3 above. 

Theorem 4.3. Let XGM  be a framed graph von Neumann algebra 

and let GGX DME X →:  be the diagonal conditional expectation on 

,XGM  where GD  is the diagonal subalgebra of the graph von Neumann 

algebra .GM  Then 

( )
,:

iso-
eX

GEe

r
DG MM

GX
∈

∗
∗=  
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where 

( ) ,, iso-def
: eXeXeX MMMMvNM C⊗==

∗  

for all ( ),GEe ∈  where ( ),, µ= ∞ XLM X  and eM ’s are -GD free blocks 

of .GM  

Proof. Let GGX DME X →:  be the diagonal conditional expectation, 

( ) .Φ⊗= DEIE ntX  

Then, we have 

( )

,:
iso-

eX
GEe

r
DG MM

XGX
∈

∗
∗=  

with respect to the conditional expectation ,0E  by Subsection 4.3 

( )
eX

GEe

r
DM MM

GX CC
⊗∗=

∈
⊗

∗ iso-  

( )
,iso-

eX
GEe

r
D MM

G
⊗∗=

∈

∗  

with respect to the conditional expectation ntI  

( )
.:

iso-
eX

GEe

r
D M

G
∈

∗
∗=  ■ 

4.4. Calculus on X affected by graph groupoids. Let ( )µ= ,, XXX B  
be a given Borel space and let G be a directed graph with its graph 
groupoid .G  For a given Borel space X, we can naturally determine the 
calculus on X; for any ,XB B∈  we have the integrals of the characteristic 

functions ,BX  

( ).BdB
X

µ=µ∫ X  
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Recall that all elements g of ( )µ= ∞ ,XLM X  are approximated by the 
simple functions formed by 

.with, C∈∑
∈

BBB
B

tt
X

X
B

 

Thus, the integrals µ∫ dg
X

 are well-defined, and hence we have calculus 

on X. 

We extend such an integration on X to multi-dimensional integration 
on the framed graph von Neumann algebra .XGM  Then, this will show 

how the calculus on X is affected by the (outside) structures, represented 
by the graph groupoids G  of graphs G. Notice that the changes of the 
calculus on X from G  becomes not only be multi-dimensional, but also be 
dictated by the admissibility on .G  

Such changes are explained by the conditional expectation 
( ) ,Φ⊗= DEIE ntX  where C→Xnt MI :  is the integration on X, and 

GG DME →:  is the canonical conditional expectation introduced in 
Subsection 3.3, and Φ  is a -∗ isomorphism between XGM  and 

.GX MM C⊗  

Let XGMa ∈  with its expression, 

( )
( ) ( ).,,

,
wBwB

wB
Lta

X
∑
∈

=
G

 

Then the integral of a, as a ( ) -GV⊕C value (recall that ( )GV
GD ⊕∗

= C
iso- ), 

can be defined by the expectation ( ),aEX  i.e., 

( ) ( )
( )

( )
( )




























⊗














χ⊗= ∑∑

≠∈≠∈
w

tw
BwB

tB
ntX LtEIaE

wBwBX 0,
,

0, ,, GB

 

( )
( )

( )









































µχ= ∑∑∫

≠∈≠∈
w

tw
BwB

tBX
LEdt

wBwBX 0,
,

0, ,, GB
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( )
( ) ( )

( ) ( )

.
0,

,
0, ,,




























µ= ∑∑

≠∈≠∈
v

tGVv
wB

tB
LBt

vBwBXB

 (4.4.1) 

Denote the multipliers 

( )
( ) ( )

( ) ( )
v

tGVv
wB

tB
LBt

vBwBX
∑∑

≠∈≠∈

µ
0,

,
0, ,,

and,
B

 

of (4.4.1), by aI  and ,aE  respectively. We can realize that, if 

( )
( ) ,,

0, ,
XBwB

tB
Mtg

wBX

∈χ= ∑
≠∈B

 

with its integral 

,a
X

Idg =µ∫  

then such an integral µ∫ dg
X

 of g is changed (in XGM ) by the 

expectation aE  of 

( )

,
0, ,

Gw
tw

ML
wB

∈∑
≠∈G

 

dependent upon the elements w of the graph groupoid G  satisfying that 

( ) .0, ≠wBt  

Observation. The above discussion shows that the ( ) -GV⊕C valued 

integration on the von Neumann algebra XGM  is well-defined by the 

diagonal conditional expectation ,XE  and it is dependent upon the 

integration µ⋅= ∫ dI
Xnt  on X, and the admissibility on the graph 

groupoid .G  This means that the integration ntI  on X is affected by the 

dynamics of C  determined by .G   ⁭ 
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5. Fractal Graphs 

In the previous section, we consider (i) how the calculus on a Borel 
space ( )µ= ,, XXX B  is extended to the calculus on a certain operator 

algebra ( )XGHB  (in particular, on a von Neumann algebra XGM ), and 

(ii) how the obstacles G  (certain operators, in particular, partial 
isometries G  embedded in ( )XL G ) in the von Neumann algebra XGM  

changes the integration µ⋅= ∫ dI
Xnt  on X in the operator-valued 

integration .: GGX DME X →  

To find the concrete examples for applications, we consider a special 
kind of graphs, and their graph groupoids. We would like to handle “good” 
graphs having certain regularity, represented by the fractal property, in 
short, the fractality. In this section, we will concentrate on introducing 
fractal graphs and their graph groupoids, called the graph fractaloids. 
Roughly speaking, fractal graphs are the graphs generating the fractality 
in their graph groupoids. The study of fractal graphs and graph 
fractaloids, itself, is interesting (see [9], [12], [15], [16], [19], and [21]). 

Remember that all our graphs are assumed to be connected and 
locally finite. (Of course, the results of Section 4 hold for the general 
cases. Hence, we did not consider / mention this assumption much, but 
from now, this assumption is very much needed!) Recall that a graph G is 
connected, if for any pair ( )vv ′,  of “distinct” vertices, there always exists 

a reduced finite path w in the graph groupoid G  of G, such that 

,vwvw ′=  and .11 vwvw −− ′=  Also, a graph G is said to be locally finite, 

if all vertices v of G has finite degrees, i.e., ( ) .deg ∞<v  

In this section, we concentrate on introducing fractal graphs, graph 
fractaloids, and their basic properties. The definition of fractal graphs is 
based on the connectedness and the locally-finiteness. 
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5.1. Graph trees. In this section, we construct the graph tree GT  

induced by a given connected locally finite directed graph G. Throughout 
this section, all graphs are automatically assumed to be connected, and 
locally finite. 

Recall that a directed graph, having neither multi-edges nor loop 
finite paths, is called a directed tree. If a directed tree G has at least one 
vertex v, satisfying that ( ) ,0deg =vin  is said to be a directed tree with 

root(s). The vertices with 0 in-degree are called the roots of G. Suppose, 
we have a directed tree G with roots, and assume that we fix one root .0v  

Then G is called a rooted tree with its root .0v  Now, let G be a rooted tree 

with its root ,0v  and assume that the direction of G is one-flow from the 

root .0v  Then G is a one-flow rooted tree. A one-flow rooted tree is 

infinite, then it is said to be a growing rooted tree. Assume that a growing 
rooted tree G satisfies that, for any ( ),GVv ∈  the out-degree ( )voutdeg  

are all identical. Then G is a regular tree. In particular, if ( ) ,deg Nvout =  

for all ( ),GVv ∈  then this regular tree G is called the N-regular tree. To 

emphasize the regularity of this tree G, we denote this N-regular tree G 
by .NT  For instance, the 2-regular tree 2T  is as follows: 

 

. 
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Let G be a graph, and let 

{ ( ) ( )} .in:degmax N∞<∈= GVvvN out  

Consider the shadowed graph lG  of G. Define the subsets v
vE ′  of ( l )E G  

by 

{ ( l ) }def : ,v
vE e E G e v e v′ ′= ∈ =  

for all ( ) ( l )2, .v v V G′ ∈  Remark that v and v′  are not necessarily distinct 

in ( l ).V G  It is possible that there exists a pair ( )21, vv  of vertices such 

that 2
1

v
vE  is empty. By definition, 

( l )
( ),

.v
v

v v
E G E ′

′

= ∪  

Then construct the graph tree GT  of G, by re-arranging the elements 

( l ) ( l ) ,V G E G∪  up to the admissibility on the free semigroupoid 

( l ) ,G+F  as follows. First, fix any arbitrary vertex ( l ) ( )0 .v V G V G∈ =  

Then arrange 
(l ) 0

,v
v

v V G
e E

∈
∈ ∪  by attaching them to ,0v  preserving the 

direction on G, i.e., we can construct 

 



FRAMES, FRACTALS AND RADIAL OPERATORS … 367

Then, we can have the above finite rooted tree with its root .0v  Of course, 

if the set 
(l ) 0

v
v

v V G
E

∈
∪  is empty, then we only have the trivial tree ,0vG  

with ( ) { },00 vGV v =  and ( ) .0 ∅=vGE  The edges in the column ( )∗  is 

induced by the re-arrangement of the elements in 
(l ) 0

,v
v

v V G
E

∈
∪  and the 

vertices in the column ( )∗∗  means the re-arrangement of the “terminal” 

vertices of the edges in 
(l ) 0

.v
v

v V G
E

∈
∪  

Now, let ( l )1v V G∈  be an arbitrary chosen vertex of the shadowed 

graph lG  of G, re-arranged in ( ).∗∗  Then, we can do the same process for 

,1v  i.e., arrange the edges in 
(l ) 1

v
v

v V G
E

∈
∪  (if it is not empty), by attaching 

them to ,1v  preserving the direction on G, i.e., we can construct 

 

Here, the column ( )$  is induced by the re-arrangement of the edges in 

(l ) 1
,v

v
v V G

E
∈
∪  and the vertices in the column ( )$$  means the re-

arrangement of the terminal vertices of the edges in 
(l ) 1

.v
v

v V G
E

∈
∪  We can 
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do the same processes for all vertices in ( ).∗∗  Now, notice that it is 

possible that one of the vertices in the columns ( )∗∗  or ( )$$  can be .0v  

For instance, if 0
0

v
vE  is not empty (equivalently, if 0v  has an incident 

loop-edge), then 0v  is located in ( ).∗∗  Similarly, 0v  can be located in 

( ).$$  For instance, if 0v  has its incident length-2 loop finite path in 

( l ) ,G+F  then 0v  is in ( ).$$  We admit such cases, i.e., a same vertex of 

( l )V G  can appear several times in this rooted-tree-making process. 

Do this process until it ends. If G is infinite, then do this process 
infinitely. The one-flow rooted tree, induced by this process, with its root 

0v  is denoted by .0vT  Notice that, from this process, we can embed all 

elements (possibly several or infinitely many repeated times) in 

( l ) ( l )V G E G∪  into ,0vT  preserving their admissibility! 

Definition 5.1. Let G be a connected locally finite directed graph 

with its shadowed graph l ,G  and let 0vT  be a rooted tree with its root ,0v  

induced by G, by the above process. We say that, this process the graph-
tree making, and the tree 0vT  is called the -0v tree of G. 

By definition, every connected locally finite directed graph G has 

( l ) -V G many vertex-trees of G. Notice that, the vertex-trees of G are 

determined by the vertices and edges in the “shadowed” graph lG  of G. 
The following proposition is easily proven by the definition of the vertex-
trees of a given graph, and by the connectedness of our graphs. 

Observe now several examples for the construction of vertex-graphs 
of a given graph. 

Example 5.1. Let 1O  be a one-vertex-1-loop-edge graph with 

( ) { } ( ) { }.and, 11 veveOEvOV ===  
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Then, the shadowed graph m1O  of 1O  has its vertex set ( m )1 ,V O  identical 

to ( ),1OV  and its edge set 

( m ) { } ( m ) { }1
1 1, and , .V O v E O e e−= =  

Then, we can construct the v-graph of 1O  by 

 

We can realize that the v-graph vT  is graph-isomorphic to the 2-regular 

graph .2T  
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Example 5.2. Let eG  be the two-vertices-one-edge graph with 

( ) { } ( ) { }.and,, 2121 veveGEvvGV ee ===  

Then, the shadowed graph meG  is a directed graph with 

( m ) { } ( m ) { }1
1 2, , and , .e eV G v v E G e e−= =  

So, we can have the -1v tree 1vT  of G, 

,
1

21

1

21 1 "
−−
→•→•→•→•= e

v
e

v
e

v
e

v vT  

and the -2v tree 2vT  of G, 

.
1

1

21

1

2 2 "e
v

e
v

e
v

e
v v →•→•→•→•=

−−
T  

Therefore, both 1vT  and 2vT  are graph-isomorphic to the 1-regular tree 

.1T  

Example 5.3. Let 1,2T  be the finite tree with 

( ) { },,, 3211,2 vvvTV =  

and 

( ) { },, 321221111,2 veveveveTE ===  

i.e., 

 

Then, after finding, the shadowed graph n2,1T  of ,1,2T  we can have the 

-1v tree 1vT  of ,1,2T  



FRAMES, FRACTALS AND RADIAL OPERATORS … 371

 

and the -2v tree 2vT  of ,1,2T  
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and the -3v graph 3vT  of ,1,2T  

 

We can check that 2vT  and 3vT  are graph-isomorphic, but neither of 

them is graph-isomorphic to .1vT  

Example 5.4. Let 2K  be the one-flow circulant graph with 

( ) { },, 212 vvKV =  

and 

( ) { }., 122221112 veveveveKE ===  

Then, the shadowed graph m2K  of 2K  has 

( m ) { } ( m ) { }1 1
2 1 2 2 1 2, , and , .V K v v E K e e± ±= =  

By using the tree-making process, we obtain that the -1v graph 1vT  and 

the -2v graph 2vT  are graph-isomorphic to the 2-regular tree .2T  
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Example 5.5. We say that nC  is the complete graph with n-vertices, 

if for any pair ( )vv ′,  of distinct vertices in ( ),nCV  there exists a unique 

edge ( ),nCEe ∈  such that ,veve ′=  where { }.1\N∈n  We can easily 

check that ( ) ,1deg −= nvout  for all ( ).nCVv ∈  Thus, we can check that 

the graph trees vT  are graph-isomorphic to the ( )-12 −n regular tree 

( ),12 −nT  for all ( ).nCVv ∈  

Example 5.6. Let NT  be the N-regular tree, for .N∈N  Assume 

that 0v  is the root of .NT  It is easy to check that the v-trees vT  are 

graph-isomorphic to the 2N-regular tree ,2NT  whenever 0vv ≠  in 

( ).NV T  However, the -0v tree 0vT  is not graph-isomorphic to .2NT  

As we have seen in the previous examples, sometimes, the vertex-
trees of a given graph are graph-isomorphic from each other, or not. In 
general, the vertex-trees of a graph G are not graph-isomorphic from 
each other. 

5.2. Fractal graphs. Let G be a connected, locally finite directed graph 
with its graph groupoid .G  By Subsection 5.1, for the given graph G, we 
can construct the vertex-fixed graph trees { ( )}GVvv ∈:T  of G. Define 

the graph fractaloids and the fractal graphs. 

Definition 5.2. Let G be a connected locally finite directed graph and 

{ ( )},: GVvv ∈T  the collection of all vertex-trees of G. Also, let  

{ ( ) ( )} ,in:degmax GGVvvN out ∈=  

where ( ).degout  means the out-degree of vertices. If every v-tree vT  of G 

is graph-isomorphic to the 2N-regular tree ,2NT  for all ( l ) ,v V G∈  then 

the graph groupoid G  of G is called the graph fractaloid. Also, we call the 
graph G, a fractal graph, i.e., a connected locally finite directed graph, 
generating a graph fractaloid, is said to be a fractal graph. 
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In [15] and [16], we define graph fractaloids by the labelling process 
on graph groupoids, determined by automata theory. Automata theory let 
us detect the fractality on graph groupoids. Even though our definition of 
graph fractaloids are defined without automata settings, it is well-defined 
in the same sense of [15] and [16], because our vertex-fixed graph trees, 
in the sense of Subsection 5.1, are equivalent version of automata trees, 
in the sense of [15]. 

Now, we introduce the characterizations of graph fractaloids of [15]. 

Theorem 5.1 (see [15]). Let G be a connected locally finite directed 
graph with its graph groupoid ,G  where N is the maximum of the out-

degrees of the vertices of G. And let GA  be the graph automaton                

in the sense of [15], having the corresponding automata actions 

{ ( l ) }: .w w G+∈ FA  

(1) G  is a graph fractaloid, if and only if the automata actions act 
fully on the 2N-regular tree .2NT  

(2) G  is a graph fractaloid, if and only if the all automata trees, 
induced by the automata actions wA ’s, are graph-isomorphic to the 2N-

regular tree .2NT   ⁭ 

The statement (1) of the previous theorem provides the automata-
theoretical characterization of graph fractaloids, and the statement (2) 
provides the algebraic characterization of graph fractaloids. These two 
characterizations show that indeed our vertex-fixed graph trees in the 
sense of Subsection 5.1 are the graph-theoretical re-expression of the 
automata trees of graph groupoids in the sense of [15]. Thanks to these 
characterizations, we found the pure graph-theoretical characterization of 
graph fractaloids in [21]. 

Theorem 5.2 (see [21]). Let G be a connected locally finite directed 
graph with 

{ ( ) ( )} .,:degmax GinGVvvN out ∈=  
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Then, the graph G is a fractal graph, if and only if 

( ) ( ) ( ).,degdeg GVvallforvNv inout ∈==  ⁭ 

The above characterization gives the best way to detect the fractality of 
graph groupoids, simply by checking the out-degrees and in-degrees of 
vertices of a given graph. It is interesting that the fractality on an 
algebraic structure, graph groupoids, is detected by the pure 
combinatorial data, degrees of vertices. 

The above graph-theoretical characterization of graph fractaloids has 
its equivalent version. 

Theorem 5.3 (see [21]). Let G be a connected locally finite directed 
graph with 

{ ( ) ( )} .,:degmax GinGVvvN out ∈=  

Then, the graph G is a fractal graph, if and only if 

(l ) ( ) ldeg 2 , ,G
out v N in G=  

for all ( l ) ( ) ,v V G V G∈ =  where lG  is the shadowed graph of G, and 

(l ) ( )deg .G
out  means the out-degree of vertices of l.G   ⁭ 

By the previous two theorems, we can have the following easy tools to 
detect the fractality of graph groupoids. 

Proposition 5.4. Let G be a connected locally finite directed graph. 

(1) If there is a vertex 0v  of G, such that ( ) ( )00 degdeg vv inout ≠  in G, 

then G is not fractal. 

(2) If there is a pair ( )vv ′,  of vertices, such that ( ) )( ,degdeg 21 vv kk ′≠  

for some { },,, 21 outinkk ∈  then G is not fractal. 

(3) If G contains either a sink or a source, then G is not fractal.  ⁭ 
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Recall that a vertex ( )GVv ∈  is a sink (or a source), if ( ) 0deg =vout  

(resp., ( ) 0deg =vin ). The statement (3) of the previous proposition shows 

that any regular trees are not fractal, since the roots of the trees are 
sources. 

Example 5.7. (1) The one-vertex-n-loop-edge graph ,nO  with 

( ) { },vOV n =  

and 

( ) { }njveveOE jjn ,,1: …===  

is fractal, for all ,N∈n  since 

( ) ( ) ,in,degdeg ninout Ovnv ==  

where v is the unique vertex of .nO  

(2) The one-flow circulant graph ,mK  with 

( ) { },,,1 mm vvKV …=  

and 

( ) { }1
def

11 with,,,1: vvmjveveKE mjjjjm ==== ++ …  

is fractal, for all { },1\N∈m  since 

( ) ( ) ,in,deg1deg mjinjout Kvv ==  

for all .,,1 mj …=  

(3) Let mC  be the complete graph with 

( ) { },,,1 mm vvCV …=  

and 

( ) { { }},,,1: mjieCE ijm …∈≠=  
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where ije  means the edge connecting the vertex iv  to the vertex ,jv  for 

{ },,,1, mji …∈  for { }.1\N∈m  Then mC  is a fractal graph, since 

( ) ( ) ,in,deg1deg mjinjout Cvnv =−=  

for all .,,1 mj …=  

(4) The infinite linear graph L, graph-isomorphic to 

"" →•→•→  

is a fractal graph, since 

( ) ( ),deg1deg vv inout ==  

for all ( ).LVv ∈  

For more interesting example, see [10]. 

5.3. Radial operators of graph fractaloids. Let G be a fractal graph 
with its graph fractaloid ,G  and let GM  be the graph von Neumann 

algebra of G. Let GG MT ∈  be the radial operator in the sense of 

Subsection 3.4. In [15], we consider the spectral information of ,GT  by 

computing the -GD valued free moments { ( )} ,1
∞
=n

n
GTE  where GD  is the 

diagonal subalgebra of ,GM  and E is the canonical conditional 

expectation from GM  onto .GD  Since GT  is self-adjoint in ,GM  the free 

distributional data represents the spectral information of .GT  So, instead 

of observing the spectral data of ,GT  we computed free moments of it. 
The following theorem is the main result of [15]. 

Theorem 5.5 (see [15]). Let G be a fractal graph, and ,GG MT ∈  the 

radial operator of the graph fractaloid G  of G. Then, the -GD valued free 

moments are 

( ) ( ) ,1 GD
o
N

n
G nTE ⋅= L  

for all ,N∈n  where ( )no
NL  is given in Appendix.  ⁭ 
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It is interesting that the operator-valued (or amalgamated) free 
moments of GT  is completely determined by the scalar-values 

{ ( ) } .1
∞
=n

o
N nL  

5.4. Richness of graph fractaloids. In this section, we briefly consider 
the mathematical richness of graph fractaloids. There are “sufficiently” 
many graph fractaloids, induced by connected locally finite (even finite) 
graphs (see [10]). Moreover, in [10], we showed that, whenever we choose 

a pair ( ) ,, ∞×∈ NNmn  where { },def ∞=∞ ∪NN  there always exists at 

least one fractal graph G. 

Theorem 5.6 (see [10]). Let ractalF  be the set of all connected locally 

finite fractal graphs. If 

( )[ ]
( )

( )
( ) 













=
∈∀

=
∈=

GVm
andGVv

Ginnv
mn

out

ractal ,
,,deg

, def FG  

is a subset of ,ractalF  for all ( ) ,, 0NN ×∈mn  then all subsets ( )[ ]mn,  of 

ractalF  are nonempty, and 

( )
( )[ ]( ).,

0,
def mn

mnractal NN×∈
= F  ⁭ 

Notice that the subsets ( )[ ]mn,  of ractalF  are in fact, the equivalence 

classes in ,ractalF  i.e., if we define an equivalence relation R  on ractalF  

by 

( ) ( ),
21

def
21

n
G

n
G TETEGG =⇔R  for all ,N∈n  

then the relation R  is an equivalence relation, and hence ( )[ ]mn, ’s are 

the equivalence classes in ,ractalF  where kGT  are the radial operators of 

the graph fractaloids kG  of ,kG  for .2,1=k  For any graph fractaloid 

( )[ ],, mn∈G  induced by a fractal graph G, we have that 
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( ) ( ) .allfor,1 NC ∈⋅= ⊕ kkTE m
o
n

k
G L  

The equivalence relation R  is called the spectral relation, and the 
equivalence classes are called the spectral classes. Also, the classification 
in the above theorem is said to be the spectral classification of graph 
fractaloids (see [10]). 

Notice that the free groups, which are “fractal groups” (see [39]), are 
contained in the spectral class ( )[ ].1,n  In general, if ,1>m  then the 

elements in ( )[ ]mn,  are groupoids with fractality, which are not fractal 

groups. 

6. Framed Fractal Graphs 

Throughout this section, all graphs are connected and locally finite. 
Let G be a fractal graph with its graph fractaloid .G  As in Section 4, we 
can construct the framed graph ,XG  with the frame ( ),,, µ= XXX B  a 

Borel measure space, and the corresponding framed groupoid .XG  By the 

graph-theoretical characterization of graph fractaloids, the given graph G 
satisfies 

( ) ( ) ,in,degdeg GvNv inout ==  

for all ( ),GVv ∈  where 

{ ( ) ( )} .in,:degmax GGVvvN out N∈∈=  

It is a natural question: How can we establish the fractality on the framed 
groupoid XG ? 

Let G be a connected locally finite graph and let ( )µ= ,, XXX B  be a 

Borel measure space. Let XG  be the framed graph of G with the frame X, 

and let XG  be the framed groupoid of .XG  
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The fractality of XG  may not be detected by the same tool, like in 

Section 5 (or, like in [15]), because we “framed” the graph G (or the 
groupoid G ) with the Borel measure space ( ).,, µ= XXX B  However, 

remark that the algebraic properties of the framed groupoid XG  is 

completely dependent upon those of the graph fractaloid .G  So, we may / 
can extend our fractality to that of framed groupoids. The definition of 
framed fractaloids may seem artificial, but it is reasonable. 

Definition 6.1. Let G be a connected locally finite graph with its 
graph groupoid .G  Let XG  be the framed graph of G with the frame =X  

( ).,, µXX B  The framed graph XG  is said to be a framed fractal graph, if 

G is a fractal graph. Also, the framed groupoid XG  of XG  is called the 

framed (graph) fractaloid of G with the frame X (or, of XG ). 

Roughly speaking, a framed fractal graph XG  is the topological 
space, generated by the directions (or the admissibility) of the given 
graph G, which satisfies the fractality. 

In Section 6, we observed that, if G is a connected, “finite” graph, then 
there always exists a finite fractal graph oG  such that .oGG ≤  So, we 
can obtain the following corollary. 

Corollary 6.1. Let XG  be a framed graph of a connected “finite” 

graph G, with the frame X, and let XG  be the framed groupoid of .XG  

Then, there always exists a framed fractaloid ,o
XG  with the same frame X, 

such that XG  is a subgroupoid of .o
XG  

Proof. Let G be given. Then, there exists a fractal graph ,oG  such 

that .oGG ≤  So, we obtain the groupoid-inclusion, ,oGG ⊆  where oG  

is the graph fractaloid of .oG  ■ 

Here, we want to emphasize that, even though the fractality on the 
framed fractaloid XG  is determined by that of ,G  the properties 

(dependent upon the fractality) of XG  and those of G  are different. By 
the very definition, a graph fractaloid G  is a pure algebraic object having 
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the fractality, and a framed fractaloid XG  is an algebraic, topological, 
and measure-theoretical object. Thus, our definition of framed fractaloids 
enlarges the study of the measure-preserving fractality to dynamical 

systems, i.e., our framed fractaloids will give the -∗W dynamical systems 
in a certain operator algebra, measure-preserving fractality! 

Also, by Subsection 5.4, for any fixed frame X, we can have the 
following classification of framed fractaloids for the fixed frame. 

Corollary 6.2. Let X
ractalF  be the set of all framed fractaloids of 

framed fractal graphs, with the fixed frame X, i.e., 

{ }.:def fractaloidframedtheisXX
X
ractal GG=F  

Then, for any ( ) ,, ∞×∈ NNmn  there exists at least one fractaloid ∈XG  

,X
ractalF  such that ( )[ ] ,, ractalmn F⊂∈G  where G  is the graph 

fractaloid of G, whenever XG  is the framed groupoid of the framed graph 

.XG  Moreover,  

( )
( )[ ] ,,

, Xmn
X
ractal mn

∞×∈
=

NN
F  

where ( )[ ]Xmn,  is the equivalence class in X
ractalF  defined by 

( )[ ] ( )[ ] ,,, ractalXX mnmn F⊂∈⇔∈ GG  

where ractalF  and ( )[ ]mn,  are given in Subsection 5.4.  ⁭ 

By the previous corollary, we can have the following corollary: 

Corollary 6.3. Let Frame
ractalF  be the set of all framed groupoids of 

framed fractal graphs. Then 

( )
( )[ ] .,

,:






=

∞×∈ XmnSpaceMeasureBorelBoundedX
Frame
ractal mn

NN
F  

⁭ 
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7. Framed Radial Operators 

Let G be a connected locally finite graph and ( )µ= ,, XXX B  be a 

Borel measure space, and let XG  be the framed graph of G with the 

frame X, having its framed groupoid .XG  Also, let ( )LH XG ,  be the 

canonical framed graph representation of ,XG  in the sense of Section 4, 

consisting of the framed graph Hilbert space GXG HHH X ⊗=def  and the 

framed groupoid action L of ,XG  acting on ,XGH  where 

( ),,2 µ= XLHX  and ( ).2 GlHG =  

In this section, we define a certain operator XGT  on ,XGH  induced 

by the framed graph .XG  The importance of this Hecke-type operator 

XGT  is that: it explains how the framed groupoid XG  act in an operator 

algebra ( ).XGHB  

In Subsection 3.4, we define the radial operator GT  of ,G  as an 

element of the graph von Neumann algebra [ ] ( ( )),in G
w

G HBM GC=  by 

( )
( )

( )
( ).1−+=+= ∑∑

∈

∗

∈
ee

GEe
ee

GEe
G LLLLT  

And we already know, how GT  acts on the graph Hilbert space GH  (see 
[16]), in particular, where G is a fractal graph. In Subsection 5.3, we 

introduce the free moment computations ( )k
GTE  of :GT  if G is a fractal 

graph, then 

( ) ( ) ,1 mkTE o
n

k
G C⋅= L  

where 

{ ( ) ( )} ,in,:degmax GGVvvn out N∈∈=  

and 

( ) ,∞∈= NGVm  
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where ( )ko
nL  is the collection of all lattice paths in ,2R  satisfying the 

axis property. 

For any ,XB B∈  there exists the corresponding characteristic 

function Bχ  in ( ),XLM X
∞=  regarded as a multiplication operator with 

its symbol Bχ  on ( ).2 XLHX =  For instance, the identity operator XM1  

of XM  is identical to .Xχ  Notice that, as an operator in ,XM  every Bχ  

is a projection, for all .XB B∈  

Assumption. Without loss of generality, in the rest of this paper, we 
regard the framed graph von Neumann algebra XGM  as its -∗ isomorphic 

von Neumann algebra ,GXG MMX C⊗=M  i.e., we use XGM  and 

,XGM  alternatively.  ⁭ 

Now, define the framed radial operators of the framed groupoid .XG  

Definition 7.1. Let XG  be a framed graph with its framed groupoid 

,XG  and let XGM  be the framed graph von Neumann algebra of .XG  

Define “a” framed radial operator B
GX

T  of XG  by the element in ,XGM  

,GB T⊗χ  

where GT  is the radial operator of ,G  in the sense of Subsection 3.4, in 

the graph von Neumann algebra ,GM  for .XB B∈  In particular, this 

radial operator B
GX

T  is called the B-framed radial operator of .XG  If 

,XB =  then we call this X-framed radial operator ,X
GT  the full radial 

operator of .XG  

By definition, the B-framed radial operator B
GX

T  satisfies 

GB
B

G TT
X

⊗χ=def  
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( )
( )













+⊗χ= −∑

∈
1ee

GEe
B LL  

( )
( ( ))1−+⊗χ= ∑

∈
eeB

GEe
LL  

( )
(( ) ( ))1−⊗χ+⊗χ= ∑

∈
eBeB

GEe
LL  

( )
(( ) ( ) )∗

∈

⊗χ+⊗χ= ∑ eBeB
GEe

LL  

( )
( ( ) ( ) ),1,, −+= ∑

∈
eBeB

GEe
LL  

for all .XB B∈  Different from the radial operator GG MT ∈  of the graph 

groupoid ,G  the framed radial operators B
GX

T  of a framed groupoid XG  

is also determined by the data, represented by the (measures of) Borel 
sets B in ,XB  too. It is easily shown that, for any singleton sets { }t  are 

contained in XB  (if they exist well), then the radial operator GT  of ,G  

and the { }-t framed radial operators { }t
GX

T  are identically distributed over 

the diagonal subalgebra ( ) ,GV
GD ⊕= C  for all .Xt ∈  

Let B
GX

T  be the B-framed radial operator of .XGM  The operator B
GX

T  

is understood as an amalgamated random variable in the framed -GD  

valued graph -∗W probability space ( )XG EM X ,  over .XGG DD =  So, we 

can consider the free distributional data of ,B
GX

T  for the fixed .XB B∈  

To do that, we compute the -GD valued free moments 

{ (( ) )} .1 GGk
kB

GX DDTE XX
=⊂∞

=  
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In particular, we are interested in the case, where the given framed 
groupoid XG  is a framed fractaloid. By using the free distributional data 

of the radial operator GT  of the graph fractaloid G  (see Subsection 3.2), 

we can compute the free moments of framed radial operators B
GX

T  of the 

framed fractaloid ,XG  for all .XB B∈  And, we can realize that the k-th 

moment (( ) )kB
GX

TE  of B
GX

T  is just a scalar multiplication of ( ),k
GTE  for 

all .N∈k   

Theorem 7.1. Let ( )XG
B

G EMT XX
,∈  be the B-framed radial 

operator of the framed fractaloid XG  of the framed fractal graph ,XG  for 

.XB B∈  Assume that 

{ ( ) ( )} .,:degmax GinGVvvN out ∈=  

Then, the -GD valued moments of B
GX

T  are determined by 

(( ) ) ( ( ) ( ) ) ,1 GX D
o
N

kB
GX kBTE ⋅⋅µ= L  

for all .N∈k  

Proof. Fix .N∈k  Assume that G is a fractal graph, satisfying that 

( ) ( ) ,in,degdeg GvNv inout ==  

for all ( ).GVv ∈  By definition, the framed graph XG  of G, with the 

frame X, is a framed fractal graph, and hence, the framed groupoid XG  

of XG  is a framed fractaloid. Let B
GX

T  be the B-framed radial operator, 

for .XB B∈  Then 

(( ) )
( )

( ( ) ( ) )





























+= ∗

∈
∑

k

eBeB
GEe

X
kB

GX LLETE
X ,,  
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( )
(( ) ( ))






























⊗χ+⊗χ= −∑

∈

k

eBeB
GEe

X LLE 1  

( )
( )

( ) ,1











































+⊗χ⊗µ= −∑

∈

k

ee
GEe

B LLE  

by the bimodule property of ⊗  

( )
( )

( ) .1





























+⊗χ⊗µ= −∑

∈

k

ee
GEe

k
B LLE  

Since 

( ) ( )k
k

k

wY
wYY

k
wY LLL ,

,
, ==














�
�	� ∩…∩

 

         ,k
w

k
YwY LL k ⊗χ=⊗χ≅  

for all ( ) ,, XwY G∈  and ,N∈k  

 ( )( )
( )

( )













































+µ= −∑

∈

k

ee
GEe

LLEB 1  

 ( )( ) ( ( )),k
GTEBµ=  

where GT  is the radial operator of the graph fractaloid ,G  since the 

radial operator GT  in the usual graph von Neumann algebra GM  is 
defined by 

( )
( ),1−+= ∑

∈
ee

GEe
G LLT  

i.e., for any ,XB B∈  a framed radial operator B
GX

T  satisfies 

(( ) ) ( ( )) ( ( )) .in G
k

G
kB

GX DTEBTE
X

µ=  
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Therefore, 

(( ) ) ( ( ) ( ) ) ,1 GX D
o
N

kB
GX kBTE ⋅⋅µ= L  

for all ,N∈k  and ,XB B∈  since N is the maximum of the out-degrees of 

vertices of G, and since 

( ) ( ) ,1 GD
o
N

k
G kTE ⋅= L  

for all N∈k  (see Subsection 3.2), where ( )ko
NL  is the collection of all 

length-k lattices satisfying the axis property. ■ 

By the previous theorem, we can obtain the following corollary: 

Corollary 7.2. Let X
GX

T  be the full radial operator of the framed 

fractaloid .XG  If the frame ( )µ= ,, XXX B  of the framed fractal graph 

XG  is a Borel probability measure space, in the sense that ( ) ,1=µ X  then 

the operator ,XX G
X

G MT ∈  and the radial operator GG MT ∈  of the graph 

fractaloid G  are identically distributed over .GD  

Proof. By the previous theorem, 

(( ) ) ( ( ) ( ) ) ,1 GX D
o
N

kX
GX kXTE ⋅⋅µ= L  

for all .N∈k  Since the Borel measure space X is a probability measure 
space, 

( ) .1=µ X  

Thus, 

(( ) ) ( ) ( ),1 k
GD

o
N

kX
GX TEkTE GX

=⋅= L  

for all ,N∈k  under the fractality of .G  ■ 



ILWOO CHO 388

Appendix: Lattice paths 

Let 2R  be the 2-dimensional -R vector space. As usual, we regard 2R  
as the -R plane, induced by the horizontal axis (or the x-axis) and the 

vertical axis (or the y-axis). Let N∈N  be a fixed number. Then, for the 

given number N, we define the lattices Nll ,,1 …  by the vectors in 2R  by 

( ) .,,1allfor,,1def Nkel k
k …==  

To distinguish the point ( )βα,  in ,2R  and the vector ( ),, βα  connecting 

the origin ( )0,0  to the point ( )βα,  in ,2R  we denote the vector ( ),, βα  by 

( ),, βα  for all ( ) ., 2R∈βα  Then, the lattices Nll ,,1 …  are understood as 
the upward lattices. Define now the downward lattices Nll −− ,,1 …  by 

( ) .,,1allfor,,1def Nkel k
k …=−=−  

Then, the set { }NN llX ±±= ,,1 …  is said to be the (lattice) labelling set, 
for .N∈N  Let NX  be the labelling set. Then, we can generate lattice 

paths in 2R  by the following rule: Construct a lattice path ,ji ll  by 

transforming the starting point ( )0,0  of jl  to the ending point ( )i
ieε,1  of 

,il  where 

{ }
{ }




−−∈−
∈

=ε
,,,1if,1

,,,1if,1
Ni

Ni
i …

…
 

for all { }.,,1 Ni ±±∈ …  By using the iterated attaching (or 
transforming), we can construct the lattice paths ,1 nii ll …  for 

{ },,,1 Nij ±±∈ …  for all .N∈n  By ,NL  denote the set of all such 

lattice paths, generated by the labelling set ,NX  and we call ,NL  the 
lattice path set generated by .NX  

Let .1 Nii nlll L∈= …  Then, the length l  of l is defined to be n, the 

cardinality of lattices in ,NX  generating the lattice path l. Define a 
subset ( )nNL  of NL  by 
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( ) { },:def nlln NN =∈= LL  

for all .N∈n  Then, the lattice path set NL  is decomposed by 

( ),
1

kNkN LL
∞

=
=   

where   means the disjoint union. The subsets ( )kNL  of NL  are called 
the length-k lattice path set. 

Let ,Nl L∈  and suppose the lattice path l end on the horizontal axis, 

in other words, the ending point of the path l is on the horizontal axis in 

.2R  Then, we say that the lattice path l satisfies the (horizontal) axis 

property. Define the subsets ( )ko
NL  of ( )kNL  by 

( ) { ( ) }.propertyaxisthesatisfies:def lklk N
o
N LL ∈=  

It is easy to check that, by the definition of the lattices ,,,1 Nll ±± …  the 

subsets ( )ko
NL  are empty, whenever k is odd in .N  In [14] and [40], we 

computed the cardinalities of ( ),ko
NL  for ., N∈kN  

Proposition 7.3 (see [14] and [40]). Let .N∈N  Then ( ) ,0=no
NL  

whenever n is odd in .N  For all ,N∈k  

( )
( )

,,,2 2
,,

1
221

kj
jj

o
N jck

kk

…
…
∑

∈

=
C

L  

where 

( )
( ) { }

,

0

,,1,,
,,

2

1

221

2
21

212



















=

≤≤≤
±±∈

=

∑ = i
k

i

k

k
k

kk

j

jjj
Njj

jj …
……

…C  

where the summand kj jc 2,,1 …  satisfies the following recurrence 

relation: If there exists kd 21 ≤≤  and { }ks 2,,1 …∈  such that 
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,,,,
-

,,,,, 1121 ��
��	� ………
timesd

sssjjjj jjjcc sk −
=  

then it satisfies that 

,.,,, 2,,
-

,,, 1111 dkjj
timesd

sssjj Ccjjjc ss −−
= …… ��
��	� …  

with 

,1,,,, =jjjjc …  for all { },,,1 Nj ±±∈ …  

where ( ) ,!!
!def

nmn
mCnm −

=  for all .N∈≤ mn   ⁭ 

For instance, if ,103,3,2,1,1,1,1,2,3,3 C∈−−−−−c  then we can compute it 

by 

3,3,2,1,1,1,1,2,3,3 −−−−−c  

( ) ( )2102,1,1,1,1,2,3,3 Cc −−−−−=  

( ) ( ) ( )210181,1,1,1,2,3,3 CCc −−−−−=  

( ) ( ) ( ) ( )21018271,1,2,3,3 CCCc −−−−−=  

( ) ( ) ( ) ( ) ( )2101827252,3,3 CCCCc −−−=  

( ) ( ) ( ) ( ) ( ) ( )210182725133,3 CCCCCc −−=  

( ) ( ) ( ) ( ) ( ).21018272513 CCCCC=  
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